import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch if torch.cuda.is_available(): device = "cuda" else: device = "cpu" model_id = "thrishala/mental_health_chatbot" try: model = AutoModelForCausalLM.from_pretrained( model_id, device_map=device, torch_dtype=torch.float16, low_cpu_mem_usage=True, max_memory={device: "15GB"}, offload_folder="offload", ) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.model_max_length = 512 except Exception as e: print(f"Error loading model: {e}") exit() def generate_text(prompt, max_new_tokens=128): input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=False, eos_token_id=tokenizer.eos_token_id, return_dict=True, # Explicitly set return_dict=True ) generated_text = tokenizer.decode(output.sequences[0], skip_special_tokens=True) # Decode from sequences return generated_text def generate_text_streaming(prompt, max_new_tokens=128): input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): for i in range(max_new_tokens): output = model.generate( input_ids=input_ids, max_new_tokens=1, do_sample=False, eos_token_id=tokenizer.eos_token_id, return_dict=True, output_scores=True, ) generated_token = tokenizer.decode(output.logits[0][-1].argmax(), skip_special_tokens=True) yield generated_token input_ids = torch.cat([input_ids, output.sequences[:, -1:]], dim=-1) if output.sequences[0][-1] == tokenizer.eos_token_id: break def respond(message, history, system_message, max_tokens): prompt = f"{system_message}\n" for user_msg, bot_msg in history: prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" prompt += f"User: {message}\nAssistant:" try: for token in generate_text_streaming(prompt, max_tokens): yield token # Yield each token individually except Exception as e: print(f"Error during generation: {e}") yield "An error occurred." demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a friendly and helpful mental health chatbot.", label="System message", ), gr.Slider(minimum=1, maximum=128, value=32, step=1, label="Max new tokens"), ], ) if __name__ == "__main__": demo.launch()