Spaces:
Sleeping
Sleeping
idk anymore is more a vibe
Browse files
app.py
CHANGED
@@ -12,14 +12,14 @@ model_id = "thrishala/mental_health_chatbot"
|
|
12 |
try:
|
13 |
model = AutoModelForCausalLM.from_pretrained(
|
14 |
model_id,
|
15 |
-
device_map=device,
|
16 |
torch_dtype=torch.float16,
|
17 |
low_cpu_mem_usage=True,
|
18 |
-
max_memory={device: "15GB"},
|
19 |
offload_folder="offload",
|
20 |
)
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
-
tokenizer.model_max_length = 512
|
23 |
|
24 |
except Exception as e:
|
25 |
print(f"Error loading model: {e}")
|
@@ -32,11 +32,12 @@ def generate_text(prompt, max_new_tokens=128):
|
|
32 |
output = model.generate(
|
33 |
input_ids=input_ids,
|
34 |
max_new_tokens=max_new_tokens,
|
35 |
-
do_sample=False,
|
36 |
eos_token_id=tokenizer.eos_token_id,
|
|
|
37 |
)
|
38 |
|
39 |
-
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
40 |
return generated_text
|
41 |
|
42 |
def generate_text_streaming(prompt, max_new_tokens=128):
|
@@ -46,20 +47,20 @@ def generate_text_streaming(prompt, max_new_tokens=128):
|
|
46 |
for i in range(max_new_tokens):
|
47 |
output = model.generate(
|
48 |
input_ids=input_ids,
|
49 |
-
max_new_tokens=1,
|
50 |
-
do_sample=False,
|
51 |
eos_token_id=tokenizer.eos_token_id,
|
52 |
-
return_dict=True,
|
53 |
-
output_scores=True
|
54 |
)
|
55 |
|
56 |
-
generated_token = tokenizer.decode(output.logits[0][-1].argmax(), skip_special_tokens=True)
|
57 |
-
yield generated_token
|
58 |
|
59 |
-
input_ids = torch.cat([input_ids, output.sequences[:, -1:]], dim=-1)
|
60 |
|
61 |
-
if output.sequences[0][-1] == tokenizer.eos_token_id:
|
62 |
-
break
|
63 |
|
64 |
def respond(message, history, system_message, max_tokens):
|
65 |
prompt = f"{system_message}\n"
|
@@ -68,9 +69,8 @@ def respond(message, history, system_message, max_tokens):
|
|
68 |
prompt += f"User: {message}\nAssistant:"
|
69 |
|
70 |
try:
|
71 |
-
for token in generate_text_streaming(prompt, max_tokens):
|
72 |
-
yield token
|
73 |
-
|
74 |
except Exception as e:
|
75 |
print(f"Error during generation: {e}")
|
76 |
yield "An error occurred."
|
@@ -82,7 +82,7 @@ demo = gr.ChatInterface(
|
|
82 |
value="You are a friendly and helpful mental health chatbot.",
|
83 |
label="System message",
|
84 |
),
|
85 |
-
gr.Slider(minimum=1, maximum=128, value=32, step=
|
86 |
],
|
87 |
)
|
88 |
|
|
|
12 |
try:
|
13 |
model = AutoModelForCausalLM.from_pretrained(
|
14 |
model_id,
|
15 |
+
device_map=device,
|
16 |
torch_dtype=torch.float16,
|
17 |
low_cpu_mem_usage=True,
|
18 |
+
max_memory={device: "15GB"},
|
19 |
offload_folder="offload",
|
20 |
)
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
+
tokenizer.model_max_length = 512
|
23 |
|
24 |
except Exception as e:
|
25 |
print(f"Error loading model: {e}")
|
|
|
32 |
output = model.generate(
|
33 |
input_ids=input_ids,
|
34 |
max_new_tokens=max_new_tokens,
|
35 |
+
do_sample=False,
|
36 |
eos_token_id=tokenizer.eos_token_id,
|
37 |
+
return_dict=True, # Explicitly set return_dict=True
|
38 |
)
|
39 |
|
40 |
+
generated_text = tokenizer.decode(output.sequences[0], skip_special_tokens=True) # Decode from sequences
|
41 |
return generated_text
|
42 |
|
43 |
def generate_text_streaming(prompt, max_new_tokens=128):
|
|
|
47 |
for i in range(max_new_tokens):
|
48 |
output = model.generate(
|
49 |
input_ids=input_ids,
|
50 |
+
max_new_tokens=1,
|
51 |
+
do_sample=False,
|
52 |
eos_token_id=tokenizer.eos_token_id,
|
53 |
+
return_dict=True,
|
54 |
+
output_scores=True,
|
55 |
)
|
56 |
|
57 |
+
generated_token = tokenizer.decode(output.logits[0][-1].argmax(), skip_special_tokens=True)
|
58 |
+
yield generated_token
|
59 |
|
60 |
+
input_ids = torch.cat([input_ids, output.sequences[:, -1:]], dim=-1)
|
61 |
|
62 |
+
if output.sequences[0][-1] == tokenizer.eos_token_id:
|
63 |
+
break
|
64 |
|
65 |
def respond(message, history, system_message, max_tokens):
|
66 |
prompt = f"{system_message}\n"
|
|
|
69 |
prompt += f"User: {message}\nAssistant:"
|
70 |
|
71 |
try:
|
72 |
+
for token in generate_text_streaming(prompt, max_tokens):
|
73 |
+
yield token # Yield each token individually
|
|
|
74 |
except Exception as e:
|
75 |
print(f"Error during generation: {e}")
|
76 |
yield "An error occurred."
|
|
|
82 |
value="You are a friendly and helpful mental health chatbot.",
|
83 |
label="System message",
|
84 |
),
|
85 |
+
gr.Slider(minimum=1, maximum=128, value=32, step=1, label="Max new tokens"),
|
86 |
],
|
87 |
)
|
88 |
|