Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,69 +5,55 @@ import torch
|
|
5 |
model_id = "thrishala/mental_health_chatbot"
|
6 |
|
7 |
try:
|
8 |
-
# Load model with int8 quantization for CPU
|
9 |
model = AutoModelForCausalLM.from_pretrained(
|
10 |
model_id,
|
11 |
device_map="cpu",
|
12 |
-
torch_dtype=torch.float16,
|
13 |
-
low_cpu_mem_usage=True,
|
14 |
-
max_memory={"cpu": "15GB"},
|
15 |
-
offload_folder="offload",
|
16 |
)
|
17 |
|
18 |
-
# Load tokenizer
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
20 |
|
21 |
-
# Create pipeline with optimizations
|
22 |
pipe = pipeline(
|
23 |
"text-generation",
|
24 |
model=model,
|
25 |
tokenizer=tokenizer,
|
26 |
torch_dtype=torch.float16,
|
27 |
-
num_return_sequences=1,
|
28 |
-
do_sample=True,
|
29 |
-
truncation=True,
|
30 |
-
max_new_tokens=128
|
31 |
)
|
32 |
|
33 |
except Exception as e:
|
34 |
print(f"Error loading model: {e}")
|
35 |
exit()
|
36 |
|
37 |
-
def respond(
|
38 |
-
|
39 |
-
history: list[tuple[str, str]],
|
40 |
-
system_message, # You can use this for initial instructions
|
41 |
-
max_tokens,
|
42 |
-
temperature,
|
43 |
-
top_p,
|
44 |
-
):
|
45 |
-
# 2. Construct the Prompt (Crucial!)
|
46 |
-
prompt = f"{system_message}\n"
|
47 |
for user_msg, bot_msg in history:
|
48 |
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
49 |
prompt += f"User: {message}\nAssistant:"
|
50 |
-
|
51 |
-
# 3. Generate with the Pipeline
|
52 |
try:
|
53 |
response = pipe(
|
54 |
prompt,
|
55 |
max_new_tokens=max_tokens,
|
56 |
temperature=temperature,
|
57 |
top_p=top_p,
|
|
|
|
|
58 |
)[0]["generated_text"]
|
59 |
-
|
60 |
-
do_sample=True,
|
61 |
-
#Extract the bot's reply (adjust if your model format is different)
|
62 |
bot_response = response.split("Assistant:")[-1].strip()
|
63 |
yield bot_response
|
64 |
-
|
65 |
except Exception as e:
|
66 |
print(f"Error during generation: {e}")
|
67 |
-
yield "An error occurred during generation."
|
68 |
-
|
69 |
|
70 |
-
# 4. Gradio Interface (No changes needed here)
|
71 |
demo = gr.ChatInterface(
|
72 |
respond,
|
73 |
additional_inputs=[
|
@@ -78,13 +64,10 @@ demo = gr.ChatInterface(
|
|
78 |
gr.Slider(minimum=1, maximum=128, value=128, step=1, label="Max new tokens"),
|
79 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
80 |
gr.Slider(
|
81 |
-
minimum=0.1,
|
82 |
-
maximum=1.0,
|
83 |
-
value=0.95,
|
84 |
-
step=0.05,
|
85 |
-
label="Top-p (nucleus sampling)",
|
86 |
),
|
87 |
],
|
|
|
88 |
)
|
89 |
|
90 |
if __name__ == "__main__":
|
|
|
5 |
model_id = "thrishala/mental_health_chatbot"
|
6 |
|
7 |
try:
|
|
|
8 |
model = AutoModelForCausalLM.from_pretrained(
|
9 |
model_id,
|
10 |
device_map="cpu",
|
11 |
+
torch_dtype=torch.float16,
|
12 |
+
low_cpu_mem_usage=True,
|
13 |
+
max_memory={"cpu": "15GB"},
|
14 |
+
offload_folder="offload",
|
15 |
)
|
16 |
|
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
18 |
+
tokenizer.model_max_length = 256 # Set maximum length
|
19 |
|
|
|
20 |
pipe = pipeline(
|
21 |
"text-generation",
|
22 |
model=model,
|
23 |
tokenizer=tokenizer,
|
24 |
torch_dtype=torch.float16,
|
25 |
+
num_return_sequences=1,
|
26 |
+
do_sample=True,
|
27 |
+
truncation=True,
|
28 |
+
max_new_tokens=128
|
29 |
)
|
30 |
|
31 |
except Exception as e:
|
32 |
print(f"Error loading model: {e}")
|
33 |
exit()
|
34 |
|
35 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
36 |
+
prompt = f"{system_message}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
for user_msg, bot_msg in history:
|
38 |
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
39 |
prompt += f"User: {message}\nAssistant:"
|
40 |
+
|
|
|
41 |
try:
|
42 |
response = pipe(
|
43 |
prompt,
|
44 |
max_new_tokens=max_tokens,
|
45 |
temperature=temperature,
|
46 |
top_p=top_p,
|
47 |
+
do_sample=True,
|
48 |
+
pad_token_id=tokenizer.eos_token_id
|
49 |
)[0]["generated_text"]
|
50 |
+
|
|
|
|
|
51 |
bot_response = response.split("Assistant:")[-1].strip()
|
52 |
yield bot_response
|
|
|
53 |
except Exception as e:
|
54 |
print(f"Error during generation: {e}")
|
55 |
+
yield "An error occurred during generation."
|
|
|
56 |
|
|
|
57 |
demo = gr.ChatInterface(
|
58 |
respond,
|
59 |
additional_inputs=[
|
|
|
64 |
gr.Slider(minimum=1, maximum=128, value=128, step=1, label="Max new tokens"),
|
65 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
66 |
gr.Slider(
|
67 |
+
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)",
|
|
|
|
|
|
|
|
|
68 |
),
|
69 |
],
|
70 |
+
chatbot=gr.Chatbot(type="messages"), # Updated to new format
|
71 |
)
|
72 |
|
73 |
if __name__ == "__main__":
|