Spaces:
Sleeping
Sleeping
ok can i still see xD
Browse files
app.py
CHANGED
@@ -2,6 +2,11 @@ import gradio as gr
|
|
2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
model_id = "thrishala/mental_health_chatbot"
|
6 |
|
7 |
try:
|
@@ -13,25 +18,42 @@ try:
|
|
13 |
max_memory={"cpu": "15GB"},
|
14 |
offload_folder="offload",
|
15 |
)
|
16 |
-
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
18 |
tokenizer.model_max_length = 512 # Set maximum length
|
|
|
19 |
|
20 |
-
pipe = pipeline(
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
)
|
30 |
|
31 |
except Exception as e:
|
32 |
print(f"Error loading model: {e}")
|
33 |
exit()
|
|
|
|
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def respond(
|
36 |
message,
|
37 |
history,
|
@@ -45,15 +67,15 @@ def respond(
|
|
45 |
prompt += f"User: {message}\nAssistant:"
|
46 |
|
47 |
try:
|
48 |
-
response = pipe(
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
)[0]["generated_text"]
|
54 |
|
55 |
# Extract only the new assistant response after the last Assistant: in the prompt
|
56 |
-
|
57 |
yield bot_response
|
58 |
except Exception as e:
|
59 |
print(f"Error during generation: {e}")
|
|
|
2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
+
if torch.cuda.is_available():
|
6 |
+
device = "cuda"
|
7 |
+
else:
|
8 |
+
device = "cpu"
|
9 |
+
|
10 |
model_id = "thrishala/mental_health_chatbot"
|
11 |
|
12 |
try:
|
|
|
18 |
max_memory={"cpu": "15GB"},
|
19 |
offload_folder="offload",
|
20 |
)
|
21 |
+
model.to(device)
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
23 |
tokenizer.model_max_length = 512 # Set maximum length
|
24 |
+
# ok this is just to slow with pipe i wish it was faster. Si were ren=moving pipe in favor of local model
|
25 |
|
26 |
+
# pipe = pipeline(
|
27 |
+
# "text-generation",
|
28 |
+
# model=model,
|
29 |
+
# tokenizer=tokenizer,
|
30 |
+
# torch_dtype=torch.float16,
|
31 |
+
# num_return_sequences=1,
|
32 |
+
# do_sample=False,
|
33 |
+
# truncation=True,
|
34 |
+
# max_new_tokens=128
|
35 |
+
# )
|
36 |
|
37 |
except Exception as e:
|
38 |
print(f"Error loading model: {e}")
|
39 |
exit()
|
40 |
+
def generate_text(prompt, max_new_tokens=128):
|
41 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) #Move input to the same device as the model
|
42 |
|
43 |
+
with torch.no_grad(): #Disable gradients during inference
|
44 |
+
output = model.generate(
|
45 |
+
input_ids=input_ids,
|
46 |
+
max_new_tokens=max_new_tokens,
|
47 |
+
do_sample=False, # Or True for sampling
|
48 |
+
eos_token_id=tokenizer.eos_token_id, # Use EOS token to stop generation
|
49 |
+
)[0]["generated_text"]
|
50 |
+
|
51 |
+
# Extract only the new assistant response after the last Assistant: in the prompt
|
52 |
+
bot_response = response[len(prompt):].split("User:")[0].strip() # Take text after prompt and before next User
|
53 |
+
)
|
54 |
+
|
55 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
56 |
+
return generated_text
|
57 |
def respond(
|
58 |
message,
|
59 |
history,
|
|
|
67 |
prompt += f"User: {message}\nAssistant:"
|
68 |
|
69 |
try:
|
70 |
+
# response = pipe(
|
71 |
+
# prompt,
|
72 |
+
# max_new_tokens=max_tokens,
|
73 |
+
# do_sample=False,
|
74 |
+
# eos_token_id=tokenizer.eos_token_id, # Use EOS token to stop generation
|
75 |
+
# )[0]["generated_text"]
|
76 |
|
77 |
# Extract only the new assistant response after the last Assistant: in the prompt
|
78 |
+
bot_response = generate_text(prompt, max_tokens)
|
79 |
yield bot_response
|
80 |
except Exception as e:
|
81 |
print(f"Error during generation: {e}")
|