Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,363 Bytes
44c4d91 e769dfe 8b1f0bb 3592c57 1e7b613 44c4d91 e769dfe 1e7b613 e769dfe 44c4d91 1e7b613 dbefc37 e769dfe dbefc37 e769dfe 699d2be a89fdf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
#Qwen/Qwen2.5-14B-Instruct-1M
#Qwen/Qwen2-0.5B
model_name = "bobber/Qwen-0.5B-GRPO"
subfolder = "Qwen-0.5B-GRPO/checkpoint-1868"
model = AutoModelForCausalLM.from_pretrained(
model_name,
subfolder=subfolder,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name, subfolder=subfolder)
SYSTEM_PROMPT = """
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""
@spaces.GPU
def generate(prompt, history):
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
chat_interface = gr.ChatInterface(
fn=generate,
)
chat_interface.launch(share=True)
|