Spaces:
Running
on
Zero
Running
on
Zero
gen
Browse files- README.md +1 -0
- utils/model_utils.py +51 -0
README.md
CHANGED
@@ -9,6 +9,7 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
short_description: An example for using NextStep-1-Large
|
|
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
short_description: An example for using NextStep-1-Large
|
12 |
+
python_version: "3.11"
|
13 |
---
|
14 |
|
15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
utils/model_utils.py
CHANGED
@@ -1,4 +1,55 @@
|
|
1 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
|
4 |
def expand_t(t, x):
|
|
|
1 |
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, pe_interpolation=1.0):
|
6 |
+
"""
|
7 |
+
grid_size: int of the grid height and width
|
8 |
+
return:
|
9 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
10 |
+
"""
|
11 |
+
grid_h = np.arange(grid_size, dtype=np.float32) / pe_interpolation
|
12 |
+
grid_w = np.arange(grid_size, dtype=np.float32) / pe_interpolation
|
13 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
14 |
+
grid = np.stack(grid, axis=0)
|
15 |
+
|
16 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
17 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
18 |
+
if cls_token and extra_tokens > 0:
|
19 |
+
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
20 |
+
return pos_embed
|
21 |
+
|
22 |
+
|
23 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
24 |
+
assert embed_dim % 2 == 0
|
25 |
+
|
26 |
+
# use half of dimensions to encode grid_h
|
27 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
28 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
29 |
+
|
30 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
31 |
+
return emb
|
32 |
+
|
33 |
+
|
34 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
35 |
+
"""
|
36 |
+
embed_dim: output dimension for each position
|
37 |
+
pos: a list of positions to be encoded: size (M,)
|
38 |
+
out: (M, D)
|
39 |
+
"""
|
40 |
+
assert embed_dim % 2 == 0
|
41 |
+
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
42 |
+
omega /= embed_dim / 2.0
|
43 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
44 |
+
|
45 |
+
pos = pos.reshape(-1) # (M,)
|
46 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
47 |
+
|
48 |
+
emb_sin = np.sin(out) # (M, D/2)
|
49 |
+
emb_cos = np.cos(out) # (M, D/2)
|
50 |
+
|
51 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
52 |
+
return emb
|
53 |
|
54 |
|
55 |
def expand_t(t, x):
|