Spaces:
Running
on
Zero
Running
on
Zero
More precise GPU allocation
Browse files
app.py
CHANGED
@@ -44,23 +44,11 @@ def _ensure_pil(x):
|
|
44 |
raise TypeError("Unsupported image type returned by pipeline.")
|
45 |
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
prompt=None,
|
50 |
-
seed=0,
|
51 |
-
width=512,
|
52 |
-
height=512,
|
53 |
-
num_inference_steps=28,
|
54 |
-
cfg=DEFAULT_CFG,
|
55 |
-
positive_prompt=DEFAULT_POSITIVE_PROMPT,
|
56 |
-
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
57 |
-
progress=gr.Progress(track_tqdm=True),
|
58 |
-
):
|
59 |
-
"""Run inference at exactly (width, height)."""
|
60 |
if prompt in [None, ""]:
|
61 |
gr.Warning("⚠️ Please enter a prompt!")
|
62 |
return None
|
63 |
-
|
64 |
with autocast(device_type=("cuda" if device == "cuda" else "cpu"), dtype=torch.bfloat16):
|
65 |
imgs = pipeline.generate_image(
|
66 |
prompt,
|
@@ -77,15 +65,107 @@ def infer(
|
|
77 |
seed=int(seed),
|
78 |
progress=True,
|
79 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
css = """
|
85 |
#col-container {
|
86 |
margin: 0 auto;
|
87 |
max-width: 800px;
|
88 |
}
|
|
|
|
|
|
|
|
|
89 |
"""
|
90 |
|
91 |
with gr.Blocks(css=css) as demo:
|
@@ -93,178 +173,91 @@ with gr.Blocks(css=css) as demo:
|
|
93 |
gr.Markdown("# NextStep-1-Large — Image generation")
|
94 |
|
95 |
with gr.Row():
|
96 |
-
prompt = gr.Text(
|
97 |
-
|
98 |
-
show_label=False,
|
99 |
-
max_lines=2,
|
100 |
-
placeholder="Enter your prompt",
|
101 |
-
container=False,
|
102 |
-
)
|
103 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
104 |
cancel_button = gr.Button("Cancel", scale=0, variant="secondary")
|
105 |
|
106 |
with gr.Row():
|
107 |
with gr.Accordion("Advanced Settings", open=True):
|
108 |
-
positive_prompt = gr.Text(
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
placeholder="Optional: add positives",
|
113 |
-
container=True,
|
114 |
-
)
|
115 |
-
negative_prompt = gr.Text(
|
116 |
-
label="Negative Prompt",
|
117 |
-
show_label=True,
|
118 |
-
max_lines=2,
|
119 |
-
placeholder="Optional: add negatives",
|
120 |
-
container=True,
|
121 |
-
)
|
122 |
with gr.Row():
|
123 |
-
seed = gr.Slider(
|
124 |
-
|
125 |
-
minimum=0,
|
126 |
-
maximum=MAX_SEED,
|
127 |
-
step=1,
|
128 |
-
value=3407,
|
129 |
-
)
|
130 |
-
num_inference_steps = gr.Slider(
|
131 |
-
label="Sampling steps",
|
132 |
-
minimum=10,
|
133 |
-
maximum=50,
|
134 |
-
step=1,
|
135 |
-
value=28,
|
136 |
-
)
|
137 |
with gr.Row():
|
138 |
-
width = gr.Slider(
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
step=64,
|
143 |
-
value=512,
|
144 |
-
)
|
145 |
-
height = gr.Slider(
|
146 |
-
label="Height",
|
147 |
-
minimum=256,
|
148 |
-
maximum=512,
|
149 |
-
step=64,
|
150 |
-
value=512,
|
151 |
-
)
|
152 |
-
cfg = gr.Slider(
|
153 |
-
label="CFG (guidance scale)",
|
154 |
-
minimum=0.0,
|
155 |
-
maximum=20.0,
|
156 |
-
step=0.5,
|
157 |
-
value=DEFAULT_CFG,
|
158 |
-
info="Higher = closer to text, lower = more creative",
|
159 |
-
)
|
160 |
|
161 |
with gr.Row():
|
162 |
-
result_1 = gr.Image(
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
)
|
|
|
|
|
169 |
|
170 |
examples = [
|
171 |
[
|
172 |
"Studio portrait of an elderly sailor with a weathered face, dramatic Rembrandt lighting, shallow depth of field",
|
173 |
101, 512, 512, 32, 7.5,
|
174 |
"photorealistic, sharp eyes, detailed skin texture, soft rim light, 85mm lens",
|
175 |
-
"over-smoothed skin, plastic look, extra limbs, watermark",
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
],
|
189 |
-
[
|
190 |
-
"Cute red panda astronaut sticker, chibi style, white background",
|
191 |
-
404, 384, 384, 24, 9.0,
|
192 |
-
"vector look, bold outlines, high contrast, die-cut silhouette",
|
193 |
-
"background clutter, drop shadow, gradients, text",
|
194 |
-
],
|
195 |
-
[
|
196 |
-
"Product render of matte-black wireless headphones on reflective glass with soft studio lighting",
|
197 |
-
505, 512, 384, 28, 7.0,
|
198 |
-
"clean backdrop, realistic reflections, subtle bloom, high detail",
|
199 |
-
"noise, fingerprints, text, label",
|
200 |
-
],
|
201 |
-
[
|
202 |
-
"Graphic poster in Bauhaus style with geometric shapes and bold typography placeholders",
|
203 |
-
606, 512, 512, 22, 6.0,
|
204 |
-
"flat colors, minimal palette, crisp edges, balanced composition",
|
205 |
-
"photo realism, gradients, noisy texture",
|
206 |
-
],
|
207 |
-
[
|
208 |
-
"Oil painting of a stormy sea with a lighthouse, thick impasto brushwork",
|
209 |
-
707, 384, 512, 34, 7.0,
|
210 |
-
"textured canvas, visible brush strokes, dramatic sky, moody lighting",
|
211 |
-
"smooth digital look, airbrush, neon colors",
|
212 |
-
],
|
213 |
-
[
|
214 |
-
"Architectural concept art: glass pavilion in a pine forest at dawn, ground fog",
|
215 |
-
808, 512, 384, 30, 8.0,
|
216 |
-
"physically-based rendering, soft fog, realistic materials, scale figures",
|
217 |
-
"tilt, skew, warped geometry, chromatic aberration",
|
218 |
-
],
|
219 |
-
[
|
220 |
-
"Fantasy creature: bioluminescent jellyfish dragon swimming through a dark ocean trench",
|
221 |
-
909, 512, 512, 32, 8.5,
|
222 |
-
"glowing tendrils, soft caustics, particles, high detail",
|
223 |
-
"washed out, murky, low contrast, extra heads",
|
224 |
-
],
|
225 |
-
[
|
226 |
-
"Line art coloring page of a city skyline with hot air balloons",
|
227 |
-
111, 512, 512, 18, 5.5,
|
228 |
-
"clean black outlines, uniform stroke weight, high contrast, no shading",
|
229 |
-
"gray fill, gradients, cross-hatching, text",
|
230 |
-
],
|
231 |
]
|
232 |
|
233 |
gr.Examples(
|
234 |
examples=examples,
|
235 |
-
inputs=[
|
236 |
-
prompt,
|
237 |
-
seed,
|
238 |
-
width,
|
239 |
-
height,
|
240 |
-
num_inference_steps,
|
241 |
-
cfg,
|
242 |
-
positive_prompt,
|
243 |
-
negative_prompt,
|
244 |
-
],
|
245 |
label="Click & Fill Examples (Exact Size)",
|
246 |
)
|
247 |
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
width,
|
258 |
-
height,
|
259 |
-
num_inference_steps,
|
260 |
-
cfg,
|
261 |
-
positive_prompt,
|
262 |
-
negative_prompt,
|
263 |
-
],
|
264 |
-
outputs=[result_1],
|
265 |
-
)
|
266 |
-
|
267 |
-
cancel_button.click(fn=None, inputs=None, outputs=None, cancels=[generation_event])
|
268 |
|
269 |
if __name__ == "__main__":
|
270 |
-
demo.launch()
|
|
|
44 |
raise TypeError("Unsupported image type returned by pipeline.")
|
45 |
|
46 |
|
47 |
+
def infer_core(prompt, seed, width, height, num_inference_steps, cfg, positive_prompt, negative_prompt, progress):
|
48 |
+
"""Core inference logic without GPU decorators."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
if prompt in [None, ""]:
|
50 |
gr.Warning("⚠️ Please enter a prompt!")
|
51 |
return None
|
|
|
52 |
with autocast(device_type=("cuda" if device == "cuda" else "cpu"), dtype=torch.bfloat16):
|
53 |
imgs = pipeline.generate_image(
|
54 |
prompt,
|
|
|
65 |
seed=int(seed),
|
66 |
progress=True,
|
67 |
)
|
68 |
+
return _ensure_pil(imgs[0])
|
69 |
+
|
70 |
+
|
71 |
+
# Tier 1: Very small images with few steps
|
72 |
+
@spaces.GPU(duration=90)
|
73 |
+
def infer_tiny(prompt=None, seed=0, width=512, height=512, num_inference_steps=24, cfg=DEFAULT_CFG,
|
74 |
+
positive_prompt=DEFAULT_POSITIVE_PROMPT, negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
75 |
+
progress=gr.Progress(track_tqdm=True)):
|
76 |
+
return infer_core(prompt, seed, width, height, num_inference_steps, cfg, positive_prompt, negative_prompt, progress)
|
77 |
+
|
78 |
+
|
79 |
+
# Tier 2: Small to medium images with standard steps
|
80 |
+
@spaces.GPU(duration=150)
|
81 |
+
def infer_fast(prompt=None, seed=0, width=512, height=512, num_inference_steps=24, cfg=DEFAULT_CFG,
|
82 |
+
positive_prompt=DEFAULT_POSITIVE_PROMPT, negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
83 |
+
progress=gr.Progress(track_tqdm=True)):
|
84 |
+
return infer_core(prompt, seed, width, height, num_inference_steps, cfg, positive_prompt, negative_prompt, progress)
|
85 |
+
|
86 |
+
|
87 |
+
# Tier 3: Standard generation for most common cases
|
88 |
+
@spaces.GPU(duration=200)
|
89 |
+
def infer_std(prompt=None, seed=0, width=512, height=512, num_inference_steps=28, cfg=DEFAULT_CFG,
|
90 |
+
positive_prompt=DEFAULT_POSITIVE_PROMPT, negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
91 |
+
progress=gr.Progress(track_tqdm=True)):
|
92 |
+
return infer_core(prompt, seed, width, height, num_inference_steps, cfg, positive_prompt, negative_prompt, progress)
|
93 |
+
|
94 |
+
|
95 |
+
# Tier 4: Larger images or more steps
|
96 |
+
@spaces.GPU(duration=300)
|
97 |
+
def infer_long(prompt=None, seed=0, width=512, height=512, num_inference_steps=36, cfg=DEFAULT_CFG,
|
98 |
+
positive_prompt=DEFAULT_POSITIVE_PROMPT, negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
99 |
+
progress=gr.Progress(track_tqdm=True)):
|
100 |
+
return infer_core(prompt, seed, width, height, num_inference_steps, cfg, positive_prompt, negative_prompt, progress)
|
101 |
+
|
102 |
+
|
103 |
+
# Tier 5: Maximum quality with many steps
|
104 |
+
@spaces.GPU(duration=400)
|
105 |
+
def infer_max(prompt=None, seed=0, width=512, height=512, num_inference_steps=45, cfg=DEFAULT_CFG,
|
106 |
+
positive_prompt=DEFAULT_POSITIVE_PROMPT, negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
107 |
+
progress=gr.Progress(track_tqdm=True)):
|
108 |
+
return infer_core(prompt, seed, width, height, num_inference_steps, cfg, positive_prompt, negative_prompt, progress)
|
109 |
+
|
110 |
+
|
111 |
+
# Improved JS dispatcher with better calculation logic
|
112 |
+
js_dispatch = """
|
113 |
+
function(width, height, steps){
|
114 |
+
const w = Number(width);
|
115 |
+
const h = Number(height);
|
116 |
+
const s = Number(steps);
|
117 |
+
|
118 |
+
// Calculate total pixels and complexity score
|
119 |
+
const pixels = w * h;
|
120 |
+
const megapixels = pixels / 1000000;
|
121 |
+
|
122 |
+
// Complexity score combines image size and steps
|
123 |
+
// Base: ~0.5 seconds per megapixel per step
|
124 |
+
const complexity = megapixels * s;
|
125 |
+
|
126 |
+
let target = 'btn-std'; // Default
|
127 |
|
128 |
+
// Select appropriate tier based on complexity
|
129 |
+
if (pixels <= 256*256 && s <= 20) {
|
130 |
+
// Very small images with few steps
|
131 |
+
target = 'btn-tiny';
|
132 |
+
} else if (complexity < 5) {
|
133 |
+
// Small images or few steps (e.g., 384x384 @ 24 steps = 3.5)
|
134 |
+
target = 'btn-fast';
|
135 |
+
} else if (complexity < 8) {
|
136 |
+
// Standard generation (e.g., 512x512 @ 28 steps = 7.3)
|
137 |
+
target = 'btn-std';
|
138 |
+
} else if (complexity < 12) {
|
139 |
+
// Larger or more steps (e.g., 512x512 @ 40 steps = 10.5)
|
140 |
+
target = 'btn-long';
|
141 |
+
} else {
|
142 |
+
// Maximum complexity
|
143 |
+
target = 'btn-max';
|
144 |
+
}
|
145 |
|
146 |
+
// Special cases: override based on extreme values
|
147 |
+
if (s >= 45) {
|
148 |
+
target = 'btn-max'; // Many steps always need more time
|
149 |
+
} else if (pixels >= 512*512 && s >= 35) {
|
150 |
+
target = 'btn-long'; // Large images with many steps
|
151 |
+
}
|
152 |
+
|
153 |
+
console.log(`Resolution: ${w}x${h}, Steps: ${s}, Complexity: ${complexity.toFixed(2)}, Selected: ${target}`);
|
154 |
+
|
155 |
+
const b = document.getElementById(target);
|
156 |
+
if (b) b.click();
|
157 |
+
}
|
158 |
+
"""
|
159 |
|
160 |
css = """
|
161 |
#col-container {
|
162 |
margin: 0 auto;
|
163 |
max-width: 800px;
|
164 |
}
|
165 |
+
/* Hide the dispatcher buttons */
|
166 |
+
#btn-tiny, #btn-fast, #btn-std, #btn-long, #btn-max {
|
167 |
+
display: none !important;
|
168 |
+
}
|
169 |
"""
|
170 |
|
171 |
with gr.Blocks(css=css) as demo:
|
|
|
173 |
gr.Markdown("# NextStep-1-Large — Image generation")
|
174 |
|
175 |
with gr.Row():
|
176 |
+
prompt = gr.Text(label="Prompt", show_label=False, max_lines=2, placeholder="Enter your prompt",
|
177 |
+
container=False)
|
|
|
|
|
|
|
|
|
|
|
178 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
179 |
cancel_button = gr.Button("Cancel", scale=0, variant="secondary")
|
180 |
|
181 |
with gr.Row():
|
182 |
with gr.Accordion("Advanced Settings", open=True):
|
183 |
+
positive_prompt = gr.Text(label="Positive Prompt", show_label=True,
|
184 |
+
placeholder="Optional: add positives")
|
185 |
+
negative_prompt = gr.Text(label="Negative Prompt", show_label=True,
|
186 |
+
placeholder="Optional: add negatives")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
with gr.Row():
|
188 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=3407)
|
189 |
+
num_inference_steps = gr.Slider(label="Sampling steps", minimum=10, maximum=50, step=1, value=28)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
with gr.Row():
|
191 |
+
width = gr.Slider(label="Width", minimum=256, maximum=512, step=64, value=512)
|
192 |
+
height = gr.Slider(label="Height", minimum=256, maximum=512, step=64, value=512)
|
193 |
+
cfg = gr.Slider(label="CFG (guidance scale)", minimum=0.0, maximum=20.0, step=0.5, value=DEFAULT_CFG,
|
194 |
+
info="Higher = closer to text, lower = more creative")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
with gr.Row():
|
197 |
+
result_1 = gr.Image(label="Result", format="png", interactive=False)
|
198 |
+
|
199 |
+
# Hidden dispatcher buttons
|
200 |
+
with gr.Row(visible=False):
|
201 |
+
btn_tiny = gr.Button(visible=False, elem_id="btn-tiny")
|
202 |
+
btn_fast = gr.Button(visible=False, elem_id="btn-fast")
|
203 |
+
btn_std = gr.Button(visible=False, elem_id="btn-std")
|
204 |
+
btn_long = gr.Button(visible=False, elem_id="btn-long")
|
205 |
+
btn_max = gr.Button(visible=False, elem_id="btn-max")
|
206 |
|
207 |
examples = [
|
208 |
[
|
209 |
"Studio portrait of an elderly sailor with a weathered face, dramatic Rembrandt lighting, shallow depth of field",
|
210 |
101, 512, 512, 32, 7.5,
|
211 |
"photorealistic, sharp eyes, detailed skin texture, soft rim light, 85mm lens",
|
212 |
+
"over-smoothed skin, plastic look, extra limbs, watermark"],
|
213 |
+
["Isometric cozy coffee shop interior with hanging plants and warm Edison bulbs",
|
214 |
+
202, 512, 384, 30, 8.5,
|
215 |
+
"isometric view, clean lines, stylized, warm ambience, detailed furniture",
|
216 |
+
"text, logo, watermark, perspective distortion"],
|
217 |
+
["Ultra-wide desert canyon at golden hour with long shadows and dust in the air",
|
218 |
+
303, 512, 320, 28, 7.0,
|
219 |
+
"cinematic, volumetric light, natural colors, high dynamic range",
|
220 |
+
"over-saturated, haze artifacts, blown highlights"],
|
221 |
+
["Oil painting of a stormy sea with a lighthouse, thick impasto brushwork",
|
222 |
+
707, 384, 512, 34, 7.0,
|
223 |
+
"textured canvas, visible brush strokes, dramatic sky, moody lighting",
|
224 |
+
"smooth digital look, airbrush, neon colors"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
]
|
226 |
|
227 |
gr.Examples(
|
228 |
examples=examples,
|
229 |
+
inputs=[prompt, seed, width, height, num_inference_steps, cfg, positive_prompt, negative_prompt],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
label="Click & Fill Examples (Exact Size)",
|
231 |
)
|
232 |
|
233 |
+
# Wire up the dispatcher buttons to their respective functions
|
234 |
+
ev_tiny = btn_tiny.click(infer_tiny,
|
235 |
+
inputs=[prompt, seed, width, height, num_inference_steps, cfg, positive_prompt,
|
236 |
+
negative_prompt],
|
237 |
+
outputs=[result_1])
|
238 |
+
ev_fast = btn_fast.click(infer_fast,
|
239 |
+
inputs=[prompt, seed, width, height, num_inference_steps, cfg, positive_prompt,
|
240 |
+
negative_prompt],
|
241 |
+
outputs=[result_1])
|
242 |
+
ev_std = btn_std.click(infer_std,
|
243 |
+
inputs=[prompt, seed, width, height, num_inference_steps, cfg, positive_prompt,
|
244 |
+
negative_prompt],
|
245 |
+
outputs=[result_1])
|
246 |
+
ev_long = btn_long.click(infer_long,
|
247 |
+
inputs=[prompt, seed, width, height, num_inference_steps, cfg, positive_prompt,
|
248 |
+
negative_prompt],
|
249 |
+
outputs=[result_1])
|
250 |
+
ev_max = btn_max.click(infer_max,
|
251 |
+
inputs=[prompt, seed, width, height, num_inference_steps, cfg, positive_prompt,
|
252 |
+
negative_prompt],
|
253 |
+
outputs=[result_1])
|
254 |
|
255 |
+
# Trigger JS dispatcher on run button or prompt submit
|
256 |
+
run_button.click(None, inputs=[width, height, num_inference_steps], outputs=[], js=js_dispatch)
|
257 |
+
prompt.submit(None, inputs=[width, height, num_inference_steps], outputs=[], js=js_dispatch)
|
258 |
+
|
259 |
+
# Cancel button cancels all possible events
|
260 |
+
cancel_button.click(fn=None, inputs=None, outputs=None, cancels=[ev_tiny, ev_fast, ev_std, ev_long, ev_max])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
if __name__ == "__main__":
|
263 |
+
demo.launch()
|