Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,45 +7,42 @@ from huggingface_hub import snapshot_download
|
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
load_dotenv()
|
| 9 |
|
| 10 |
-
# Load models function
|
| 11 |
-
def load_models():
|
| 12 |
-
# Check if CUDA is available
|
| 13 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
| 49 |
|
| 50 |
# Process text prompt
|
| 51 |
def process_prompt(prompt, voice, tokenizer, device):
|
|
@@ -172,13 +169,6 @@ examples = [
|
|
| 172 |
# Available voices
|
| 173 |
VOICES = ["tara", "dan", "josh", "emma"]
|
| 174 |
|
| 175 |
-
# Load models globally
|
| 176 |
-
try:
|
| 177 |
-
snac_model, model, tokenizer, device = load_models()
|
| 178 |
-
except Exception as e:
|
| 179 |
-
print(f"Error loading models: {e}")
|
| 180 |
-
raise
|
| 181 |
-
|
| 182 |
# Create Gradio interface
|
| 183 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
| 184 |
gr.Markdown("""
|
|
|
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
load_dotenv()
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Check if CUDA is available
|
| 12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
+
|
| 14 |
+
print("Loading SNAC model...")
|
| 15 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
| 16 |
+
snac_model = snac_model.to(device)
|
| 17 |
+
|
| 18 |
+
model_name = "canopylabs/orpheus-3b-0.1-ft"
|
| 19 |
+
|
| 20 |
+
# Download only model config and safetensors
|
| 21 |
+
snapshot_download(
|
| 22 |
+
repo_id=model_name,
|
| 23 |
+
allow_patterns=[
|
| 24 |
+
"config.json",
|
| 25 |
+
"*.safetensors",
|
| 26 |
+
"model.safetensors.index.json",
|
| 27 |
+
],
|
| 28 |
+
ignore_patterns=[
|
| 29 |
+
"optimizer.pt",
|
| 30 |
+
"pytorch_model.bin",
|
| 31 |
+
"training_args.bin",
|
| 32 |
+
"scheduler.pt",
|
| 33 |
+
"tokenizer.json",
|
| 34 |
+
"tokenizer_config.json",
|
| 35 |
+
"special_tokens_map.json",
|
| 36 |
+
"vocab.json",
|
| 37 |
+
"merges.txt",
|
| 38 |
+
"tokenizer.*"
|
| 39 |
+
]
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
| 43 |
+
model.to(device)
|
| 44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 45 |
+
print(f"Orpheus model loaded to {device}")
|
| 46 |
|
| 47 |
# Process text prompt
|
| 48 |
def process_prompt(prompt, voice, tokenizer, device):
|
|
|
|
| 169 |
# Available voices
|
| 170 |
VOICES = ["tara", "dan", "josh", "emma"]
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
# Create Gradio interface
|
| 173 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
| 174 |
gr.Markdown("""
|