import numpy as np from itertools import product as product import torch from torch.autograd import Function import warnings def nms_(dets, thresh): """ Courtesy of Ross Girshick [https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py] """ x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1) * (y2 - y1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(int(i)) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1) h = np.maximum(0.0, yy2 - yy1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return np.array(keep).astype(np.int32) def decode(loc, priors, variances): """Decode locations from predictions using priors to undo the encoding we did for offset regression at train time. Args: loc (tensor): location predictions for loc layers, Shape: [num_priors,4] priors (tensor): Prior boxes in center-offset form. Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: decoded bounding box predictions """ boxes = torch.cat(( priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1) boxes[:, :2] -= boxes[:, 2:] / 2 boxes[:, 2:] += boxes[:, :2] return boxes def nms(boxes, scores, overlap=0.5, top_k=200): """Apply non-maximum suppression at test time to avoid detecting too many overlapping bounding boxes for a given object. Args: boxes: (tensor) The location preds for the img, Shape: [num_priors,4]. scores: (tensor) The class predscores for the img, Shape:[num_priors]. overlap: (float) The overlap thresh for suppressing unnecessary boxes. top_k: (int) The Maximum number of box preds to consider. Return: The indices of the kept boxes with respect to num_priors. """ keep = scores.new(scores.size(0)).zero_().long() if boxes.numel() == 0: return keep, 0 x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] area = torch.mul(x2 - x1, y2 - y1) v, idx = scores.sort(0) # sort in ascending order # I = I[v >= 0.01] idx = idx[-top_k:] # indices of the top-k largest vals xx1 = boxes.new() yy1 = boxes.new() xx2 = boxes.new() yy2 = boxes.new() w = boxes.new() h = boxes.new() # keep = torch.Tensor() count = 0 while idx.numel() > 0: i = idx[-1] # index of current largest val # keep.append(i) keep[count] = i count += 1 if idx.size(0) == 1: break idx = idx[:-1] # remove kept element from view # load bboxes of next highest vals with warnings.catch_warnings(): # Ignore UserWarning within this block warnings.simplefilter("ignore", category=UserWarning) torch.index_select(x1, 0, idx, out=xx1) torch.index_select(y1, 0, idx, out=yy1) torch.index_select(x2, 0, idx, out=xx2) torch.index_select(y2, 0, idx, out=yy2) # store element-wise max with next highest score xx1 = torch.clamp(xx1, min=x1[i]) yy1 = torch.clamp(yy1, min=y1[i]) xx2 = torch.clamp(xx2, max=x2[i]) yy2 = torch.clamp(yy2, max=y2[i]) w.resize_as_(xx2) h.resize_as_(yy2) w = xx2 - xx1 h = yy2 - yy1 # check sizes of xx1 and xx2.. after each iteration w = torch.clamp(w, min=0.0) h = torch.clamp(h, min=0.0) inter = w * h # IoU = i / (area(a) + area(b) - i) rem_areas = torch.index_select(area, 0, idx) # load remaining areas) union = (rem_areas - inter) + area[i] IoU = inter / union # store result in iou # keep only elements with an IoU <= overlap idx = idx[IoU.le(overlap)] return keep, count class Detect(object): def __init__(self, num_classes=2, top_k=750, nms_thresh=0.3, conf_thresh=0.05, variance=[0.1, 0.2], nms_top_k=5000): self.num_classes = num_classes self.top_k = top_k self.nms_thresh = nms_thresh self.conf_thresh = conf_thresh self.variance = variance self.nms_top_k = nms_top_k def forward(self, loc_data, conf_data, prior_data): num = loc_data.size(0) num_priors = prior_data.size(0) conf_preds = conf_data.view(num, num_priors, self.num_classes).transpose(2, 1) batch_priors = prior_data.view(-1, num_priors, 4).expand(num, num_priors, 4) batch_priors = batch_priors.contiguous().view(-1, 4) decoded_boxes = decode(loc_data.view(-1, 4), batch_priors, self.variance) decoded_boxes = decoded_boxes.view(num, num_priors, 4) output = torch.zeros(num, self.num_classes, self.top_k, 5) for i in range(num): boxes = decoded_boxes[i].clone() conf_scores = conf_preds[i].clone() for cl in range(1, self.num_classes): c_mask = conf_scores[cl].gt(self.conf_thresh) scores = conf_scores[cl][c_mask] if scores.dim() == 0: continue l_mask = c_mask.unsqueeze(1).expand_as(boxes) boxes_ = boxes[l_mask].view(-1, 4) ids, count = nms(boxes_, scores, self.nms_thresh, self.nms_top_k) count = count if count < self.top_k else self.top_k output[i, cl, :count] = torch.cat((scores[ids[:count]].unsqueeze(1), boxes_[ids[:count]]), 1) return output class PriorBox(object): def __init__(self, input_size, feature_maps, variance=[0.1, 0.2], min_sizes=[16, 32, 64, 128, 256, 512], steps=[4, 8, 16, 32, 64, 128], clip=False): super(PriorBox, self).__init__() self.imh = input_size[0] self.imw = input_size[1] self.feature_maps = feature_maps self.variance = variance self.min_sizes = min_sizes self.steps = steps self.clip = clip def forward(self): mean = [] for k, fmap in enumerate(self.feature_maps): feath = fmap[0] featw = fmap[1] for i, j in product(range(feath), range(featw)): f_kw = self.imw / self.steps[k] f_kh = self.imh / self.steps[k] cx = (j + 0.5) / f_kw cy = (i + 0.5) / f_kh s_kw = self.min_sizes[k] / self.imw s_kh = self.min_sizes[k] / self.imh mean += [cx, cy, s_kw, s_kh] output = torch.FloatTensor(mean).view(-1, 4) if self.clip: output.clamp_(max=1, min=0) return output