bishwathakuri commited on
Commit
ccc60db
·
verified ·
1 Parent(s): a79c393

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +31 -1
src/streamlit_app.py CHANGED
@@ -1,7 +1,37 @@
 
 
1
  os.environ["MPLCONFIGDIR"] = "/tmp"
2
  os.environ["STREAMLIT_BROWSER_GATHER_USAGE_STATS"] = "false"
3
  os.environ["STREAMLIT_SERVER_HEADLESS"] = "true"
4
  os.environ["STREAMLIT_SERVER_ENABLE_FILE_WATCHER"] = "false"
5
  os.environ["STREAMLIT_CONFIG_DIR"] = "/tmp/.streamlit"
6
  os.environ["HF_HOME"] = "/tmp/huggingface"
7
- os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
  os.environ["MPLCONFIGDIR"] = "/tmp"
4
  os.environ["STREAMLIT_BROWSER_GATHER_USAGE_STATS"] = "false"
5
  os.environ["STREAMLIT_SERVER_HEADLESS"] = "true"
6
  os.environ["STREAMLIT_SERVER_ENABLE_FILE_WATCHER"] = "false"
7
  os.environ["STREAMLIT_CONFIG_DIR"] = "/tmp/.streamlit"
8
  os.environ["HF_HOME"] = "/tmp/huggingface"
9
+ os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
10
+
11
+ import streamlit as st
12
+ import torch
13
+ from transformers import AutoModelForCausalLM, AutoTokenizer
14
+
15
+ # App config and title
16
+ st.set_page_config(page_title="DeepSeek-R1 Chatbot", page_icon="🤖")
17
+ st.title("🧠 DeepSeek-R1 CPU Chatbot")
18
+ st.caption("Running entirely on CPU using Hugging Face Transformers")
19
+
20
+ @st.cache_resource
21
+ def load_model():
22
+ tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-1.3B-base")
23
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-1.3B-base")
24
+ return tokenizer, model
25
+
26
+ tokenizer, model = load_model()
27
+
28
+ user_input = st.text_area("📥 Enter your prompt here:", "Explain what a neural network is.")
29
+
30
+ if st.button("🧠 Generate Response"):
31
+ with st.spinner("Thinking..."):
32
+ inputs = tokenizer(user_input, return_tensors="pt")
33
+ outputs = model.generate(**inputs, max_new_tokens=100)
34
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
35
+
36
+ st.markdown("### 🤖 Response:")
37
+ st.write(response)