Spaces:
Running
Running
Added download, streaming and initial placeholder
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ from ragatouille import RAGPretrainedModel
|
|
| 5 |
from huggingface_hub import InferenceClient
|
| 6 |
import re
|
| 7 |
from datetime import datetime
|
|
|
|
| 8 |
|
| 9 |
retrieve_results = 10
|
| 10 |
|
|
@@ -16,15 +17,16 @@ generate_kwargs = dict(
|
|
| 16 |
)
|
| 17 |
|
| 18 |
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
|
|
|
|
| 19 |
try:
|
| 20 |
gr.Info("Setting up retriever, please wait...")
|
| 21 |
-
|
| 22 |
gr.Info("Retriever working successfully!")
|
| 23 |
except:
|
| 24 |
gr.Warning("Retriever not working!")
|
| 25 |
|
| 26 |
mark_text = '# π Search Results\n'
|
| 27 |
-
header_text = "#
|
| 28 |
try:
|
| 29 |
with open("README.md", "r") as f:
|
| 30 |
mdfile = f.read()
|
|
@@ -36,6 +38,12 @@ try:
|
|
| 36 |
except:
|
| 37 |
pass
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
def rag_cleaner(inp):
|
| 40 |
rank = inp['rank']
|
| 41 |
title = inp['document_metadata']['title']
|
|
@@ -59,15 +67,15 @@ def get_rag(message):
|
|
| 59 |
with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
| 60 |
header = gr.Markdown(header_text)
|
| 61 |
with gr.Group():
|
| 62 |
-
msg = gr.Textbox(label = 'Search')
|
| 63 |
with gr.Accordion("Advanced Settings", open=False):
|
| 64 |
with gr.Row(equal_height = True):
|
| 65 |
llm_model = gr.Dropdown(choices = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'None'], value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
|
| 66 |
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results to sent as context")
|
| 67 |
|
| 68 |
-
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True)
|
| 69 |
input = gr.Textbox(show_label = False, visible = False)
|
| 70 |
-
gr_md = gr.Markdown(mark_text)
|
| 71 |
|
| 72 |
def update_with_rag_md(message, llm_results_use = 5):
|
| 73 |
rag_out = get_rag(message)
|
|
@@ -76,8 +84,9 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
| 76 |
rag_answer = rag_out[i]
|
| 77 |
title = rag_answer['document_metadata']['title'].replace('\n','')
|
| 78 |
|
| 79 |
-
score = round(rag_answer['score'], 2)
|
| 80 |
-
|
|
|
|
| 81 |
paper_abs = rag_answer['content']
|
| 82 |
authors = rag_answer['document_metadata']['authors'].replace('\n','')
|
| 83 |
authors_formatted = f'*{authors}*' + ' \n\n'
|
|
@@ -90,9 +99,16 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
| 90 |
if llm_model_picked == 'None':
|
| 91 |
return gr.Textbox(visible = False)
|
| 92 |
client = InferenceClient(llm_model_picked)
|
| 93 |
-
output = client.text_generation(prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
msg.submit(update_with_rag_md, [msg, llm_results], [gr_md, input]).success(ask_llm, [input, llm_model], output_text)
|
| 98 |
|
|
|
|
| 5 |
from huggingface_hub import InferenceClient
|
| 6 |
import re
|
| 7 |
from datetime import datetime
|
| 8 |
+
import json
|
| 9 |
|
| 10 |
retrieve_results = 10
|
| 11 |
|
|
|
|
| 17 |
)
|
| 18 |
|
| 19 |
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
|
| 20 |
+
|
| 21 |
try:
|
| 22 |
gr.Info("Setting up retriever, please wait...")
|
| 23 |
+
rag_initial_output = RAG.search("what is Mistral?", k = 1)
|
| 24 |
gr.Info("Retriever working successfully!")
|
| 25 |
except:
|
| 26 |
gr.Warning("Retriever not working!")
|
| 27 |
|
| 28 |
mark_text = '# π Search Results\n'
|
| 29 |
+
header_text = "# ArXivCS RAG \n"
|
| 30 |
try:
|
| 31 |
with open("README.md", "r") as f:
|
| 32 |
mdfile = f.read()
|
|
|
|
| 38 |
except:
|
| 39 |
pass
|
| 40 |
|
| 41 |
+
with open("sample_outputs.json", "r") as f:
|
| 42 |
+
sample_outputs = json.load(f)
|
| 43 |
+
output_placeholder = sample_outputs['output_placeholder']
|
| 44 |
+
md_text_initial = sample_outputs['search_placeholder']
|
| 45 |
+
|
| 46 |
+
|
| 47 |
def rag_cleaner(inp):
|
| 48 |
rank = inp['rank']
|
| 49 |
title = inp['document_metadata']['title']
|
|
|
|
| 67 |
with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
| 68 |
header = gr.Markdown(header_text)
|
| 69 |
with gr.Group():
|
| 70 |
+
msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?')
|
| 71 |
with gr.Accordion("Advanced Settings", open=False):
|
| 72 |
with gr.Row(equal_height = True):
|
| 73 |
llm_model = gr.Dropdown(choices = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'None'], value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
|
| 74 |
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results to sent as context")
|
| 75 |
|
| 76 |
+
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
|
| 77 |
input = gr.Textbox(show_label = False, visible = False)
|
| 78 |
+
gr_md = gr.Markdown(mark_text + md_text_initial)
|
| 79 |
|
| 80 |
def update_with_rag_md(message, llm_results_use = 5):
|
| 81 |
rag_out = get_rag(message)
|
|
|
|
| 84 |
rag_answer = rag_out[i]
|
| 85 |
title = rag_answer['document_metadata']['title'].replace('\n','')
|
| 86 |
|
| 87 |
+
#score = round(rag_answer['score'], 2)
|
| 88 |
+
date = rag_answer['document_metadata']['_time']
|
| 89 |
+
paper_title = f'''### {date} | [{title}](https://arxiv.org/abs/{rag_answer['document_id']}) | [β¬οΈ](https://arxiv.org/pdf/{rag_answer['document_id']})\n'''
|
| 90 |
paper_abs = rag_answer['content']
|
| 91 |
authors = rag_answer['document_metadata']['authors'].replace('\n','')
|
| 92 |
authors_formatted = f'*{authors}*' + ' \n\n'
|
|
|
|
| 99 |
if llm_model_picked == 'None':
|
| 100 |
return gr.Textbox(visible = False)
|
| 101 |
client = InferenceClient(llm_model_picked)
|
| 102 |
+
#output = client.text_generation(prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
|
| 103 |
+
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
| 104 |
+
#output = output.lstrip(' \n') if output.lstrip().startswith('\n') else output
|
| 105 |
+
output = ""
|
| 106 |
+
|
| 107 |
+
for response in stream:
|
| 108 |
+
output += response.token.text
|
| 109 |
+
yield output
|
| 110 |
+
return output
|
| 111 |
+
#return gr.Textbox(output, visible = True)
|
| 112 |
|
| 113 |
msg.submit(update_with_rag_md, [msg, llm_results], [gr_md, input]).success(ask_llm, [input, llm_model], output_text)
|
| 114 |
|