Spaces:
Running
Running
adjusted number of retrievals and llm inputs
Browse files
app.py
CHANGED
|
@@ -4,6 +4,9 @@ import gradio as gr
|
|
| 4 |
from ragatouille import RAGPretrainedModel
|
| 5 |
from huggingface_hub import InferenceClient
|
| 6 |
|
|
|
|
|
|
|
|
|
|
| 7 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 8 |
|
| 9 |
generate_kwargs = dict(
|
|
@@ -36,7 +39,7 @@ def get_prompt_text(question, context, formatted = True):
|
|
| 36 |
return f"<s>" + f"[INST] {sys_instruction} " + f" {message} [/INST] </s> "
|
| 37 |
return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
|
| 38 |
|
| 39 |
-
def get_references(question, retriever, k =
|
| 40 |
rag_out = retriever.search(query=question, k=k)
|
| 41 |
return rag_out
|
| 42 |
|
|
@@ -59,7 +62,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
| 59 |
paper_title = f'''### [{title}](https://arxiv.org/abs/{rag_answer['document_id']})\n'''
|
| 60 |
paper_abs = rag_answer['content']
|
| 61 |
md_text_updated += paper_title + paper_abs + '\n---------------\n'+ '\n'
|
| 62 |
-
prompt = get_prompt_text(message, '\n\n'.join(rag_cleaner(out) for out in rag_out))
|
| 63 |
return md_text_updated, prompt
|
| 64 |
|
| 65 |
def ask_llm(prompt):
|
|
|
|
| 4 |
from ragatouille import RAGPretrainedModel
|
| 5 |
from huggingface_hub import InferenceClient
|
| 6 |
|
| 7 |
+
retrieve_results = 10
|
| 8 |
+
llm_results = 5
|
| 9 |
+
|
| 10 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 11 |
|
| 12 |
generate_kwargs = dict(
|
|
|
|
| 39 |
return f"<s>" + f"[INST] {sys_instruction} " + f" {message} [/INST] </s> "
|
| 40 |
return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
|
| 41 |
|
| 42 |
+
def get_references(question, retriever, k = retrieve_results):
|
| 43 |
rag_out = retriever.search(query=question, k=k)
|
| 44 |
return rag_out
|
| 45 |
|
|
|
|
| 62 |
paper_title = f'''### [{title}](https://arxiv.org/abs/{rag_answer['document_id']})\n'''
|
| 63 |
paper_abs = rag_answer['content']
|
| 64 |
md_text_updated += paper_title + paper_abs + '\n---------------\n'+ '\n'
|
| 65 |
+
prompt = get_prompt_text(message, '\n\n'.join(rag_cleaner(out) for out in rag_out[:llm_results]))
|
| 66 |
return md_text_updated, prompt
|
| 67 |
|
| 68 |
def ask_llm(prompt):
|