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Abstract

This thesis investigates the application of deep learning techniques, specifically transformer-
decoder models, in the realm of inverse molecular design, which holds considerable
promise in the field of drug development. The study pivots on the innovative use of
advanced natural language processing (NLP) models, adapting strategies from text
generation to molecular structure generation. Central to our approach is the use of the
SMILES (Simplified Molecular Input Line Entry System) notation, which enables the
representation of molecules as sequences of characters, similar to textual data. This
alignment allows for the application of techniques originally developed for language
models, particularly those based on the Transformer architecture.

Our primary contribution lies in the development and training of a transformer-
decoder model, drawing inspiration from the success of generative pre-training (GPT)
models in text generation. This model is specifically tailored for the generation of drug-
like molecules. A significant aspect of our work involves conditional training, where
the model is trained to incorporate additional information such as molecular scaffolds,
functional groups, and specific physicochemical properties. This approach enables
the generation of molecules that not only resemble drugs but also meet predefined
conditions set by the user.

The methodology employed includes advanced techniques such as next token
prediction and masked self-attention, fundamental to the Transformer model’s ability to
handle sequential data effectively. The performance of our model is rigorously evaluated
through a variety of metrics. These include the validity of the generated molecules, the
Fréchet ChemNet Distance (a measure of similarity to known drug-like molecules), and
internal diversity, which assesses the variety within the generated molecular structures.

The results of this study provide insights into the viability and effectiveness of using
NLP-inspired models in the context of molecular design. By offering a novel tool that
navigates the vast chemical space efficiently under specific conditions, this research
could facilitate a more targeted and expedient approach to drug development. This
work not only showcases the adaptability of text generation models for applications
in chemistry but also sets the stage for future research in the integration of machine
learning and molecular design for pharmaceutical advancements.

Keywords: Inverse Molecular Design, Transformer-Decoder Models, SMILES Notation,
Drug Development, Natural Language Processing
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1

Introduction

1.1 Context and Challenges in Drug Discovery

Drug discovery is an essential yet complex process in the pharmaceutical industry,
characterized by high costs, extensive time requirements, and a reliance on traditional
methodologies. The conventional approach predominantly involves screening vast
libraries of compounds to identify potential drug candidates, a process that is both
time-consuming and resource-intensive. Despite the significant investment in these
methods, the success rate for finding effective and safe drugs remains relatively low.
This challenge is further compounded by the ever-increasing complexity of diseases
and the growing demand for more effective treatments.

The concept of inverse molecular design emerges as a novel approach in this context.
It represents a paradigm shift from the traditional screening methods to a more proactive
design of molecules. Inverse molecular design involves the creation of new molecules,
tailored to fit specific therapeutic targets from the outset. However, this approach
introduces a new challenge: navigating the vast and largely unexplored chemical space,
which contains an innumerable number of potential molecular structures. This immense
space presents a significant hurdle, as the manual exploration and design of molecules
within it are practically unfeasible with current methodologies.

1.2 Innovative Approach Using Transformer-Decoder Models

The application of advanced computational techniques, particularly those inspired
by the field of natural language processing (NLP), offers a promising solution to
these challenges. This section introduces the use of transformer-decoder models, a
groundbreaking adaptation from NLP, to the realm of molecular design. These models,
which have shown remarkable success in text generation and understanding, are now
being repurposed to address the complexities of chemical structure generation.

Central to this approach is the use of SMILES (Simplified Molecular Input Line
Entry System) notation, which allows for the representation of chemical structures as
sequences of characters. This notation enables the application of transformer-decoder
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1.2. INNOVATIVE APPROACH USING TRANSFORMER-DECODER MODELS

models to molecular design, treating chemical structures in a manner akin to linguistic
sequences. The unique aspect of this methodology lies in its ability to generate novel
molecular structures that are not just random assortments of atoms but are chemically
valid and potentially efficacious as drug candidates.

Further, this research incorporates conditional training into the transformer-decoder
models. This technique enables the models to generate molecules based on specified
conditions, such as desired biological activity, molecular scaffolding, or pharmacokinetic
properties. Such targeted molecule generation could be particularly transformative
for personalized medicine, where treatments need to be tailored to individual patient
profiles. The conclusion of this section underscores the potential of this research to
significantly expedite the drug discovery process, reduce associated costs, and open
new frontiers in the understanding and exploration of chemical space.
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2

Brief review of literature

2.1 MolGenSurvey: A Systematic Survey in Machine Learning
Models for Molecule Design

The paper Du et al., 2022 is a detailed exploration of machine learning applications in
molecular design. It comprehensively covers various molecule representation methods,
such as 1D strings, 2D graphs, and 3D geometries. These representations are crucial
for different machine learning models to accurately interpret and generate molecular
structures. The paper also systematically reviews generative models and combinatorial
optimization methods used in molecular design. The methods described in the paper
give insights into generating new molecules and optimizing their properties.

Additionally, the paper categorizes molecule design problems and outlines their se-
tups, inputs, outputs, and objectives. This categorization is beneficial for understanding
how different machine-learning techniques can be applied to specific molecular design
tasks. The review’s focus on the broad spectrum of machine learning applications
in molecular design, including challenges and future opportunities, offers valuable
insights and context for our work.

2.2 Comparative Study of Deep Generative Models on Chemical
Space Coverage

The paper Zhang et al., 2021 proposes a novel metric for evaluating deep molecular
generative models based on the chemical space coverage of a reference dataset, GDB-13.
The performance of the models was compared by calculating what fraction of the
structures, ring systems, and functional groups could be reproduced from the largely
unseen reference set when using only a small fraction of GDB-13 for training. The
results show that the performance of the generative models studied varies significantly
using the benchmark metrics introduced herein, such that the generalization capabilities
of the generative models can be clearly differentiated. The paper also discusses the
validity and repetition rate of the sampled molecules and the analysis of the GDB-13
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2.3. GENERATIVE MODELS AS AN EMERGING PARADIGM IN THE CHEMICAL SCIENCES

database. The models benchmarked in this study are recurrent neural networks (RNNs),
autoencoder (AE)-based networks, generative adversarial networks (GANs), and graph
neural networks (GNNs). The paper provides a useful new metric that can be used for
evaluating and comparing generative models.

2.3 Generative Models as an Emerging Paradigm in the Chemi-
cal Sciences

The paper Anstine et al., 2023 highlights the limitations of traditional computational
approaches to chemical species design, which are often limited by the need to compute
properties for a vast number of candidates. In contrast, generative models aim to
start from the desired property and optimize a corresponding chemical structure. The
paper provides an overview of popular generative algorithms, including generative
adversarial networks, variational autoencoders, flow, and diffusion models. It highlights
key differences between each of the models and provides insights into recent success
stories.

The authors also discuss outstanding challenges for realizing generative modeling
discovered solutions in chemical applications. The paper emphasizes the potential
of generative models in the chemical sciences, driven by the widespread adoption
of machine learning and data-driven research, as well as advances in accelerated
computational power and a well-developed software ecosystem of ML tools. The
authors anticipate that generative models will be crucial for overcoming challenges
across the chemical sciences, leading to a reallocation of human scientific creativity and
accelerating the rate at which solutions to pressing issues are found.

2.4 Searching for High-Value Molecules Using Reinforcement
Learning and Transformers

The study Ghugare et al., 2023 presents ChemRLformer, an innovative RL-based algo-
rithm for molecular design, exploring the effects of text representation and algorithmic
training choices in reinforcement learning (RL). The research involved rigorous exper-
imentation to understand how different text grammars and training methodologies
impact the RL policy’s effectiveness in generating molecules with specific properties.
ChemRLformer is analyzed across 25 molecular design tasks, including complex protein
docking simulations, providing valuable insights into the molecular design problem
space and demonstrating its superior performance compared to previous methods.

ChemRLformer’s development is guided by several key findings: using SMILES no-
tation is more effective than SELFIES, the quality of pretraining molecules is crucial, and
both transformer and RNN architectures exhibit comparable performance. The study
also highlights the benefits of incorporating a hill-climb buffer and Log P regularization,
while cautioning against the use of overly complex methods like KL regularization or in-
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CHAPTER 2. BRIEF REVIEW OF LITERATURE

tricate actor-critic algorithms, which may not yield proportional benefits. These insights
provide a roadmap for future molecular design efforts, emphasizing the importance of
molecule quality metrics.

2.5 MolGPT: Molecular Generation Using a Transformer-Decoder
Model

This paper Bagal et al., 2022 presents technical details on the implementation and evalu-
ation of the MolGPT model. MolGPT, based on the transformer-decoder architecture,
is designed to process SMILES strings representing molecular structures. The model
leverages a masked self-attention mechanism, enabling it to learn complex patterns in
molecular data. The authors assess MolGPT’s performance by its ability to generate
molecules that are not only valid and diverse but also adhere to specified chemical
properties, demonstrating its potential for targeted molecular design.

Key experiments in the paper include assessing the model’s capacity to control
multiple properties of the generated molecules, and using saliency maps to interpret the
model’s decision-making process. These saliency maps provide insight into which parts
of the input SMILES strings are most influential in determining the structure of the
generated molecules. This interpretability is crucial for practical applications in drug
discovery and material science, where understanding the rationale behind molecular
design is essential. The study’s results show MolGPT’s effectiveness in generating
molecules that meet specific criteria, marking a significant step in computational
chemistry and molecular modeling.

2.6 Molecular Sets (MOSES): A Benchmarking Platform for
Molecular Generation Models

The research paper Polykovskiy et al., 2018 proposes a dataset and evaluates several
baseline models for generating molecules. The dataset is based on the ZINC Clean
Leads collection and contains 1,936,963 molecules with internal diversity of 0.857.
The baseline models include character-level recurrent neural networks, variational
autoencoders, adversarial autoencoders, junction tree variational autoencoders, and non-
neural baselines. The models are evaluated based on several metrics, including validity,
uniqueness, novelty, internal diversity, fragment and scaffold similarity, similarity to
a nearest neighbor, and Fréchet ChemNet Distance. The results show that the neural
network-based models successfully capture the statistics of the dataset, while the non-
neural baselines fail to produce valid molecules. The study provides a useful benchmark
for future research in generative models for molecules. Technical concepts highlighted
in the paper include SMILES strings, Bemis-Murcko scaffolds, BRICS fragments, Morgan
fingerprints, Kullback-Leibler divergence, Wasserstein-1 distance, and Fréchet ChemNet
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2.7. SAMPLE EFFICIENCY MATTERS: A BENCHMARK FOR PRACTICAL MOLECULAR
OPTIMIZATION

Distance.

2.7 Sample Efficiency Matters: A Benchmark for Practical Molec-
ular Optimization

The paper Gao et al., 2022 presents an exploration of key technical elements in molecular
design, encompassing an array of string representations for molecules, including
the Simplified Molecular-Input Line-Entry System (SMILES) and SELF-referencIng
Embedded Strings (SELFIES), as well as graph-based and synthesis-based strategies for
molecular design. The paper also delves into a variety of optimization algorithms such as
screening, genetic algorithms, Monte-Carlo Tree Search (MCTS), Bayesian optimization,
variational autoencoders (VAEs), and reinforcement learning (RL) techniques. The
study further examines the benchmark framework, which encompasses oracles, metrics,
and the utilized dataset. The primary measure of efficacy is the area under the curve
(AUC) of the top-K average property value in relation to the number of oracle calls (AUC
top-K). An extensive analysis is conducted on the effectiveness of diverse molecular
optimization methodologies, evaluated against the established metrics and oracles.

2.8 Reinforced Self-Training (ReST) for Language Modeling

The paper Gulcehre et al., 2023 introduces Reinforced Self-Training (ReST), a novel
approach in language modeling, particularly focusing on machine translation. ReST
combines reinforcement learning from human feedback (RLHF) with large language
models (LLMs) to align the model outputs more closely with human preferences. The
process involves two distinct steps: Grow and Improve. In the Grow step, ReST generates
a new dataset by sampling outputs from the current model policy. This is critical for
expanding the range of data the model is exposed to. Subsequently, in the Improve
step, the model undergoes fine-tuning using offline reinforcement learning algorithms.
This step is designed to refine the model’s performance based on the newly generated
dataset.

The significance of ReST lies in its ability to improve translation quality significantly,
which has been validated through both automated metrics and human evaluation. This
method stands out for its efficient use of computational resources and sample usage. The
results from the paper suggest that ReST can serve as a powerful tool in enhancing the
alignment of language models with human preferences, thereby improving their efficacy
in real-world applications. This methodology could potentially revolutionize the way
machine translation and other language processing tasks are approached, offering a
more nuanced and human-aligned performance.
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3

Datasets

3.1 Properties of the Datasets

3.1.1 Moses

The Moses dataset Polykovskiy et al., 2018 is a curated collection from the ZINC
database, focusing specifically on the ZINC Clean Leads collection. It comprises
4,591,276 molecules, each selected based on specific criteria: a molecular weight between
250 and 350 Daltons, no more than 7 rotatable bonds, and an XlogP value of 3.5 or less.
The dataset excludes molecules with charged atoms or atoms other than C, N, S, O, F,
Cl, Br, and H. It also omits molecules with cycles longer than 8 atoms. Additionally, the
selection process involved the application of medicinal chemistry filters (MCFs) and
PAINS filters, ensuring the dataset’s relevance for benchmarking in medicinal chemistry
and drug discovery.

3.1.2 Guacamol

The GuacaMol dataset Brown et al., 2019 is derived from the ChEMBL 24 database,
known for its synthesized and biologically tested molecules. This dataset offers a
more realistic representation of drug-like molecules compared to others like ZINC or
QM9. The refining process includes removing salts, neutralizing charges, excluding
molecules with overly long SMILES strings or less frequently occurring elements, and
filtering based on similarity to a set of known drugs. The result is a dataset tailored for
benchmarking in drug discovery, available for download with reproducible creation
through a provided docker container.

3.1.3 ChemBL

The ChEMBL database Zdrazil et al., 2023 is a comprehensive resource for drug discovery,
offering detailed bioactivity data, chemical structures, and target information for a
wide range of drug-like compounds. It includes quantitative measurements such as
IC50 and EC50, data on approved drugs, and is regularly updated. Widely accessible
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3.2. DATASET STATISTICS AFTER PROCESSING

to researchers, ChEMBL is invaluable for medicinal chemistry and pharmacological
research.

3.1.4 Zinc Datasets(250k, 1M, 10M, 270M, 37B)

The ZINC database Tingle et al., 2023 is a comprehensive collection of commercially
available chemical compounds for virtual screening and drug discovery. ZINC-22 is a
vast database of small molecules for ligand discovery, featuring a user-friendly interface,
CartBlanche, for efficient analog searching. It efficiently handles the vast chemical
space by using scalable search methods and rapid data access techniques. Despite its
rapid growth, ZINC-22 continues to show increasing chemical diversity, particularly in
complex compounds. The database, anticipating expansion to over a trillion molecules,
is freely accessible online and is pivotal for future molecule docking and discovery.

3.2 Dataset Statistics after Processing

The initial step in processing the datasets involved cleansing them to eliminate any
redundant records found within each dataset. Subsequently, we implemented the
standardization of the SMILES (Simplified Molecular Input Line Entry System) strings.
Additionally, a new column was introduced, displaying the SELFIES (Self-referencing
Embedded Strings) corresponding to each molecule. In the final phase of data prepa-
ration, we removed all extraneous columns from the dataset that were not pertinent
to our analysis. The statistics of of the datasets is highlighted in 3.1 and Table 3.2, and
visualised in Figure 3.1, 3.2 and 3.3.

Dataset Number of Rows File Size
zinc_250k 249,455 18.18 MB
zinc_1m 999,998 72.13 MB
moses 1,936,962 93.42 MB
guacamol 1,591,011 140.94 MB
chembl 2,066,232 189.25 MB
zinc_10m 9,999,971 722.37 MB
zinc_270m 269,536,671 12.5 GB

Table 3.1: Datasets Information Sorted by File Size
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CHAPTER 3. DATASETS

3.3 Inter-Dataset Overlap

Dataset Pair Overlap (Absolute) Overlap (%)
moses & guacamol 71,675 2.07%
moses & zinc_250k 13,907 0.64%
moses & zinc_1m 1,868 0.06%
moses & zinc_10m 18,579 0.16%
moses & chembl 73,316 1.87%
guacamol & zinc_250k 2,528 0.14%
guacamol & zinc_1m 204 0.01%
guacamol & zinc_10m 2,135 0.02%
guacamol & chembl 1,093,236 42.64%
zinc_250k & zinc_1m 82 0.01%
zinc_250k & zinc_10m 908 0.01%
zinc_250k & chembl 3,162 0.14%
zinc_1m & zinc_10m 966,612 9.63%
zinc_1m & chembl 285 0.01%
zinc_10m & chembl 2944 0.02%

Table 3.2: Overlap of SMILES Data between Various Datasets
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3.3. INTER-DATASET OVERLAP

Figure 3.1: Heatmap showing the total overlap of SMILES strings between all datasets.

Figure 3.2: Venn diagram showing the absolute overlap of SMILES strings between Zinc 1M and Zinc
10M datasets.
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CHAPTER 3. DATASETS

Figure 3.3: Venn diagram showing the absolute overlap of SMILES strings between Guacamol and
ChemBL datasets.
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Methods

4.1 Model

In our work, we use an adaptation of the Generative Pre-Training-2 (GPT-2) Transformer,
with 345M parameters. It features an architecture of stacked decoder blocks, each
containing a masked self-attention layer and a fully connected neural network. The
self-attention layers produce 256-sized vectors, processed by the neural network with
a hidden layer outputting 1024-sized vectors, followed by a GELU activation layer.
The final output of each block is a 256-sized vector, fed into the subsequent decoder
block, with a total of eight such blocks in the model. The model assigns position value
embeddings to track input sequence order and uses separate embeddings for condition
and SMILES tokens during conditional training, distinguishing between the two. These
embeddings are combined into a 256-dimensional vector for each token in the SMILES
string, which then serves as the model’s input. This architecture enables MolGPT to
efficiently process and generate molecular structures.

4.1.1 Motivation for Transformer Architecture

The transformer model, introduced by Vaswani et al., 2017 in their seminal paper Atten-
tion Is All You Need, addressed limitations in sequence-to-sequence models dependent
on recurrent neural networks (RNNs) and convolutional neural networks (CNNs). The
transformer model overcomes issues like vanishing gradients and inefficient paralleliza-
tion through a novel self-attention mechanism, enabling simultaneous processing of
input data sequences.

4.1.2 Key Equations and Components

Self-Attention Mechanism

The self-attention mechanism in the transformer model allows each position in the
encoder to attend to all positions in the previous layer of the encoder. It is defined as:

Attention(𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾𝑇√
𝑑𝑘

)
𝑉 (4.1)
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CHAPTER 4. METHODS

where 𝑄, 𝐾, and 𝑉 are the query, key, and value matrices, respectively, and 𝑑𝑘 is the
dimension of the key vectors.

Multi-Head Attention

Multi-head attention allows the model to jointly attend to information from different
representation subspaces:

MultiHead(𝑄, 𝐾,𝑉) = Concat(head1 , . . . , headℎ)𝑊𝑂 (4.2)

where each head is defined as:

head𝑖 = Attention(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 , 𝑉𝑊
𝑉
𝑖 ) (4.3)

and where the projections are parameter matrices 𝑊𝑄

𝑖
∈ R𝑑model×𝑑𝑘 , 𝑊𝐾

𝑖
∈ R𝑑model×𝑑𝑘 ,

𝑊𝑉
𝑖

∈ R𝑑model×𝑑𝑣 , and𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑model .

4.1.3 GPT-2 Architecture

Developed by OpenAI, Generative Pre-trained Transformer 2 (GPT-2) Radford et al., 2019
builds upon the transformer architecture for text generation. It features an autoregressive
model trained on a large corpus of text, enabling it to generate coherent and contextually
relevant sequences.

4.1.4 Unique Qualities and Advantages

• Parallel Processing: The transformer model processes elements of input data
simultaneously, leading to efficient training.

• Handling of Long-Range Dependencies: Through self-attention, the model
effectively captures dependencies, regardless of their position in the input sequence.

• Versatility: Adaptable to a wide range of tasks beyond NLP.

4.1.5 Relevance to Molecular Design

In molecular design, the transformer’s ability to process sequential data and its powerful
attention mechanism make it ideal for handling SMILES notation. GPT-2’s autoregressive
nature (Radford et al., 2019) and extensive pre-training allow for effective generation of
novel molecular structures, crucial for exploring the vast chemical space.

4.2 Training

Each model underwent training for 20 epochs using the Adam optimizer with a learning
rate set at 6e-4. The use of the Adam optimizer was chosen for its effectiveness in
computational efficiency and fast convergence. The learning rate was determined to
offer an optimal balance between convergence speed and accuracy.

14



4.3. EVALUATION METRICS

Figure 4.1: Model Architecture (Bagal et al., 2022)

The model (as shown in Figure 4.1) was both trained and tested using the MOSES
bench-marking dataset Polykovskiy et al., 2018 to provide a comprehensive basis for
evaluating the model’s performance.

For the generation process, the approach involved the use of a start token, selected
randomly from the initial tokens of molecules in the training dataset. This strategy was
employed to ensure that the generation of molecular structures began from a diverse
range of starting points, reflecting the variability in the dataset.

Additionally, experiments were conducted to test the model’s ability to control
molecular properties as well as the model’s effectiveness in generating desired scaffold
and functional group structures within molecules. The training of these models was
performed using an NVIDIA GeForce GTX 1080 Ti graphics card.

4.3 Evaluation Metrics

In evaluating synthesis-aware generative models for molecular generation, it is imper-
ative to employ comprehensive benchmarking methodologies that adequately reflect
the complexities inherent in molecular discovery. The MOSES benchmark Polykovskiy
et al., 2018 provides a comprehensive set of metrics designed to assess various aspects
of the generative models.

• Validity: Measures the percentage of generated molecules that are chemically
valid.
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CHAPTER 4. METHODS

• Uniqueness: Assesses whether the model generates diverse molecules by calculat-
ing the proportion of unique molecules in the generated set.

• Novelty: Evaluates the model’s ability to generate molecules that are not present
in the training set, indicating the model’s creativity.

• Internal Diversity: Quantifies the chemical diversity within the generated set of
molecules.

• External Diversity: Compares the diversity of the generated set to the diversity of
an external set, often the test set.

• Fréchet ChemNet Distance (FCD): Uses a deep neural network to capture chemical
and biological properties of compounds and measures the distance between the
generated and real molecules in this learned feature space.

• Fragment and Scaffold Similarity: Measures how closely the distribution of
molecular fragments and scaffolds in the generated set matches that of the
reference set.

• Similarity to Nearest Neighbor (SNN): Calculates the average Tanimoto similarity
between the generated molecules and their closest counterparts in the reference
dataset.

• Properties Distribution: Compares the distribution of certain molecular properties
(like molecular weight, logP, etc.) between the generated and reference sets using
Wasserstein-1 distance.

While computational benchmarks, such as enrichment factors in virtual screening,
standardized tests like Guacamol, and the MOSES (Molecular Sets) benchmark, have
significantly propelled the field forward, they often fall short of capturing the entire
scope of the discovery process, as highlighted by the implications of "Goodhart’s law."
These benchmarks serve as proxies and might not entirely encompass the nuances of
molecular discovery. To address these limitations and enhance the validity of these
models, the following multi-dimensional benchmarking strategies are recommended:

• Objective Maximization and Ligand Rediscovery: Assess the capacity of virtual
screening or de novo design algorithms to identify molecules that optimize given
objectives, along with their ability to rediscover known ligands. Notable bench-
marks in this category include Guacamol, various virtual screening benchmarks,
and the MOSES benchmark, which is specifically designed for assessing the quality
of generative models.

• Synthesis Prediction and Feasibility: Employ CASP tools to predict synthetic
routes or utilize synthesizability scores for generated molecules to ensure practical
feasibility in a laboratory setting.

• Molecule Quality Assurance: Implement quality filters akin to those used in
Guacamol and MOSES to ascertain the reasonableness of the generated molecules.
It is crucial to include visualizations of random, non-cherry-picked molecular
samples in machine-learning publications to provide a transparent and accurate
representation of the model’s output.
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• Evaluation of Synthesis Planning Algorithms: Conduct both quantitative and
qualitative assessments of synthesis planning algorithms to ensure they are
efficient, practical, and innovative.

The discussion further delves into the translational impact of these improvements,
questioning the real-world applicability of marginal gains observed in computational
benchmarks. Given the often sparse and diverse nature of data in drug discovery,
along with the occurrence of distribution shifts, the need for robustness in models is
paramount. The authors advocate for a balanced approach towards benchmarking, one
that encourages ongoing refinement and innovation in benchmarking practices without
necessarily mandating experimental validation due to the varying resource capabilities
of computational groups.

Recent prospective validations of virtual screening and de novo design offer promis-
ing examples of the field’s progress. These include the application of large enumerated
on-demand libraries in virtual screening and the integration of synthesis planning with
computational algorithms, showcasing their utility, particularly in the early stages of
discovery. However, the visibility and publication of such innovations are often delayed
in the industrial context due to proprietary concerns or lack of incentives, highlighting
an additional layer of complexity in benchmarking and validating these models.

In conclusion, while current benchmarks such as Guacamol, virtual screening
benchmarks, and the MOSES benchmark are instrumental in driving advancements in
molecular generation models, there is a clear and ongoing need for developing more
nuanced, robust, and comprehensive methodologies. These should not only reflect the
theoretical and computational excellence but also align closely with practical, real-world
utility in the ever-evolving landscape of drug discovery.
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5

Results

5.1 Unconditioned Training

In this section, we look at the results of training a model without any molecular
conditions. The model is trained to generate valid molecules autoregressively by
understanding the grammar of the chemical space.

5.1.1 Training Curves

Figure 5.1: Plots for Unconditioned Training of the Model

From the plots shown in Figure 5.1, we see that the validation loss and training loss
have reduced over the epochs. This indicates that the model is not overfitting as it is
able to perform reasonably well even on unseen data points.
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5.1. UNCONDITIONED TRAINING

5.1.2 Generation Results

Figure 5.2: Uncondtioned Generation Samples

5.1.3 Performance on Evaluation Metrics

Metric Value Metric Value
Valid 0.994 FCD/TestSF 1.185
Unique@1000 1.000 SNN/TestSF 0.582
Unique@10000 0.998 Frag/TestSF 0.993
FCD/Test 0.559 Scaf/TestSF 0.059
SNN/Test 0.633 IntDiv 0.849
Frag/Test 0.997 IntDiv2 0.843
Scaf/Test 0.898 Filters 0.998
logP 0.017 QED 0.003
SA 0.010 Weight 1.423

Novelty 0.749

Table 5.1: Performance of Unconditioned Generation on Evaluation Metrics
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5.2 Conditioned Training - Scaffold

We now train the model by feeding every molecule along with its scaffold information.
This enables us to prompt the resultant model with the desired scaffold to generate
molecules containing them.

5.2.1 Training Curves

Figure 5.3: Plots for Scaffold Conditioned Training of the Model

Figure 5.3, illustrates a decrease in both training and validation loss across the
epochs. This trend suggests that the model is learning effectively without overfitting, as
evidenced by its consistent performance on new, unseen data.
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5.2. CONDITIONED TRAINING - SCAFFOLD

5.2.2 Generation Results

Figure 5.4: Scaffold Conditioned Generation Samples

5.2.3 Performance on Evaluation Metrics

Metric Value Metric Value
Valid 0.985 FCD/TestSF 20.161
Unique@1000 0.894 SNN/TestSF 0.740
Unique@10000 0.702 Frag/TestSF 0.855
FCD/Test 18.911 Scaf/TestSF 0.244
SNN/Test 0.576 IntDiv 0.779
Frag/Test 0.857 IntDiv2 0.763
Scaf/Test 0.000 Filters 0.999
logP 0.194 QED 0.036
SA 0.194 Weight 6.689

Novelty 0.999

Table 5.2: Performance of Scaffold Conditioned Generation on Evaluation Metrics
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5.3 Conditioned Training - Properties

We then explore the model’s ability to understand and control some chemical properties
of the molecules generated. We train the molecule with the synthetic accessibility score
(Measurement of the difficulty of synthesizing a compound) and the logarithm of the
partition coefficient (the partition coefficient compares the solubilities of the solute in
two immiscible solvents at equilibrium). The trained model should be able to generate
molecules the showcase desired SAS and logP values.

5.3.1 Training Curves

Figure 5.5: Plots for Property Conditioned Training of the Model

The graphs in Figure 5.5 demonstrate a consistent reduction in both training and
validation loss over successive epochs. This pattern indicates effective learning by the
model and a lack of overfitting, as it maintains good performance on data it has not
previously encountered.
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5.3. CONDITIONED TRAINING - PROPERTIES

5.3.2 Generation Results

Figure 5.6: Property Conditioned Generation Samples

5.3.3 Performance on Evaluation Metrics

Metric Value Metric Value
Valid 0.849 FCD/TestSF 8.185
Unique@1000 0.113 SNN/TestSF 0.568
Unique@10000 0.660 Frag/TestSF 0.920
FCD/Test 7.355 Scaf/TestSF 0.008
SNN/Test 0.613 IntDiv 0.812
Frag/Test 0.919 IntDiv2 0.785
Scaf/Test 0.594 Filters 0.989
logP 0.632 QED 0.031
SA 0.448 Weight 17.584

Novelty 0.886

Table 5.3: Performance of Property Conditioned Generation on Evaluation Metrics
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5.4 Conditioned Training - Scaffold, Properties

As a next step, we try to train a model that can control both scaffold and property
criteria in the generated molecules. The performance of the generated molecules is
again evaluated on several metrics described earlier.

5.4.1 Training Curves

Figure 5.7: Plots for Scaffold + Property Conditioned Training of the Model

In Figure 5.7, the downward trend observed in both the training and validation
losses as epochs progress suggests that the model is effectively learning and generalizing
well. This is indicated by its stable performance on unfamiliar data, showing no signs of
overfitting.
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5.4. CONDITIONED TRAINING - SCAFFOLD, PROPERTIES

5.4.2 Generation Results

Figure 5.8: Scaffold + Property Condtitioned Generation Samples

5.4.3 Performance on Evaluation Metrics

Metric Value Metric Value
Valid 0.220 FCD/TestSF 21.831
Unique@1000 0.591 SNN/TestSF 0.557
Unique@10000 0.530 Frag/TestSF 0.802
FCD/Test 21.247 Scaf/TestSF 0.216
SNN/Test 0.469 IntDiv 0.827
Frag/Test 0.803 IntDiv2 0.806
Scaf/Test 0.001 Filters 0.989
logP 1.039 QED 0.038
SA 0.552 Weight 13.349

Novelty 1.000

Table 5.4: Performance of Scaffold + Property Conditioned Generation on Evaluation Metrics

The Table 5.4 shows that the indicates a relatively poor performance of the model in
the evaluation metrics computed (especially the fraction of valid molecules generated),
in spite of relatively consistent downward trend in the validation loss. This indicates
that the model’s performance may improve if trained for more epochs or with more
data.
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5.5 Experiment - Conditioned Training - Scaffold, Functional
Group, Property

Now we try to further introduce functional group details along with scaffold and
chemical properties previously described in the paper. We restrict the maximum
number of functional groups information passed along with any molecule to under 35.
Further, we also try to expand the chemical property information passed to the model
to include 210 other relevant properties that can be computed using the rdkit python
library.

5.5.1 Training Curves

Figure 5.9: Plots for Scaffold + Functional Group + Property Conditioned Training of the Model

Based on the showcased plots in Figure 5.9, we can observe that the validation loss
is increasing over epochs. This indicates the model’s lack of generalisation and inability
to learn meaningful insights from the data.
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5.5. EXPERIMENT - CONDITIONED TRAINING - SCAFFOLD, FUNCTIONAL GROUP,
PROPERTY

5.5.2 Generation Results

Figure 5.10: Scaffold + Property + Functional Group Generation Samples

While the model is able to generate some valid molecules as shown in Figure 5.10, a
majority of the samples generated are in fact a random sequence of atoms that do not
represent valid molecules. Moreover, even the generated molecules don’t necessarily
showcase the desired conditions prompted to the model.

5.5.3 Performance on Evaluation Metrics

Due to the model’s inability to make sense of all the additional information provided,
the majority of the molecules generated are an invalid sequence of atoms that don’t form
realistic molecules. Based on the results, we hypothesize that we will have to either
training the model with larger datasets that we have prepared (Table 3.1) or reduce the
amount of conditional information passed at each time step. Due to these factors, we
refrain from evaluating the outputs on metrics that correspond to other downstream
tasks.
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5.6 Experiment - Conditioned Training - Functional Group

Since the model was unable to learn to control all three - scaffold, chemical property
and functional group - information in our previous experiment, we try to observe the
model’s performance when only the functional group information is presented to it.
From the plots in Figure 5.11, we again notice that the validation loss is increasing over

Figure 5.11: Plots for Functional Group Conditioned Training of the Model

epochs. This indicates the model’s inability to learn the functional group representations
from the data. To further confirm our hypothesis, we train the model by restricting the
total functional group conditions fed to the model to under 5 per molecule. The training
curves corresponding to this reduced training are shown in Figure 5.12.

Figure 5.12: Plots for Functional Group (small) Conditioned Training of the Model

We see that even after significantly reducing the complexity of the input functional
group information, the model’s validation loss does not converge as desired. This
indicates the need to find better representations for the functional group condition,
or training with larger quantities of data that can increase the chances of the model’s
convergence and improved performance.
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6

Conclusion and Future Work

This report opens up several avenues for continued research in the field of AI-driven
molecular generation. The proposed methods and findings lay a foundation for further
exploration and enhancement. As seen in the previous sections, we have been able to
demonstrate reasonable performance of the model in unconditional as well as various
levels of scaffold + chemical property conditioned generation, but the model is unable
to perform adequately when presented with additional functional group information.
Some immediate next steps will involve exploring possible solutions to overcome this
shortcoming. Some of the key areas of future work include:

6.1 Training on Other Larger Datasets

• Feb’24 - Mar’24

As previously mentioned, we have prepared several datasets of varying sizes and
chemical characteristics (Table 3.1). By training on varied datasets, we can improve
the model’s understanding of the chemical space, potentially improving the model’s
performance in areas where it is currently failing.

6.2 Improved Techniques to Present the Data to the Model

• Feb’24 - Mar’24

By exploring some novel ways to present the data to the model, we may be able to
help the model better understand previously unexplored molecular characteristics like
functional groups.

6.3 Fine-tuning for Specialised Downstream Tasks

• Mar’24 - Apr’24

After achieving satisfactory performance on the defined metrics, we can explore the
model’s performance in generating molecules for more specialised tasks by fine-tuning
on suitable datasets.
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CHAPTER 6. CONCLUSION AND FUTURE WORK

6.4 Using RL-based Techniques to Search the Chemical Space

• Mar’24 - Apr’24

Finally, we can further enhance the selectivity of the model using reinforcement learning-
based techniques (Gulcehre et al., 2023, Ghugare et al., 2023) by defining appropriate
reward functions for desired actions.

6.5 Compiling Results and Finishing the Report

• Apr’24 - May’24

The last phase of the project will involve putting together all the findings and document-
ing the entire project.
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Declaration of ai-assisted technologies
in the writing process

During the preparation of this work, the author used ChatGPT to improve the orga-
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