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Dataset Overview

Datasets - Moses, Guacamol, Zinc 250k, Zinc 1M, Zinc 10M, Zinc 270M, ChemBL

e Moses: The Moses dataset is a curated collection from the ZINC database,
focusing specifically on the ZINC Clean Leads collection. It comprises
4,591,276 molecules, each selected based on specific criteria: a molecular
weight between 250 and 350 Daltons, no more than 7 rotatable bonds,
and an XlogP value of 3.5 or less. The dataset excludes molecules with
charged atoms or atoms other than C, N, S, O, F, Cl, Br, H. It also omits
molecules with cycles longer than 8 atoms. Additionally, the selection
process involved the application of medicinal chemistry filters (MCFs)
and PAINS filters, ensuring the dataset’s relevance for benchmarking in
medicinal chemistry and drug discovery.

e Guacamol: The GuacaMol dataset is derived from the ChEMBL 24
database, known for its synthesized and biologically tested molecules.
This dataset offers a more realistic representation of drug-like molecules
compared to others like ZINC or QM9. The refining process includes re-
moving salts, neutralizing charges, excluding molecules with overly long
SMILES strings or less frequently occurring elements, and filtering based
on similarity to a set of known drugs. The result is a dataset tailored for
benchmarking in drug discovery, available for download with reproducible
creation through a provided docker container.

e Zinc Datasets(250k, 1M): The ZINC database is a comprehensive col-
lection of commercially available chemical compounds for virtual screening
and drug discovery. It includes over 35 million compounds, with informa-
tion on their structures, properties, and commercial availability.

e ChemBL: The ChEMBL database is a comprehensive resource for drug
discovery, offering detailed bioactivity data, chemical structures, and tar-
get information for a wide range of drug-like compounds. It includes quan-
titative measurements such as IC50 and EC50, data on approved drugs,
and is regularly updated. Widely accessible to researchers, ChEMBL is
invaluable for medicinal chemistry and pharmacological research.


https://drive.google.com/drive/folders/1o2XvkLSQ6Y8grziofr2-bx1MNWOSrCE-?usp=sharing

Dataset Statistics after Processing

The datasets were first cleaned to remove any duplicate entries within each
dataset. Next, we standardized the SMILES (Simplified Molecular Input Line
Entry System) strings and added a new column that shows the SELFIES (Self-
referencing Embedded Strings) for each molecule. Lastly, we got rid of all the
columns in the dataset that were not needed for our analysis.

Dataset Number of Rows | File Size
ZINC_250k 249,455 18.18 MB
ZINC_1M 999,998 72.13 MB
MOSES 1,936,962 93.42 MB
GuacaMol 1,591,011 140.94 MB
ChEMBL 2,066,232 189.25 MB
ZINC_10M 9,999,971 722.37 MB
PubChem 110,993,226 4.20 GB

ZINC_270M 269,536,671 12.5 GB

Table 1: Datasets Information Sorted by File Size

Dataset Overlap with Moses-test set

Dataset Overlap (Absolute) | Overlap (%)
ZINC_250k 1287 0.52%
ZINC_1M 184 0.02%
MOSES 0 0.00%
GuacaMol 6462 0.41%
ChEMBL 6591 0.32%
ZINC_10M 1673 0.02%
PubChem 116245 0.10%
ZINC_270M 46977 0.02%

Table 2: Dataset Overlap with Moses-test set




Inter-Dataset Overlap

Dataset Pair

Overlap (Absolute)

Overlap (%)

moses & guacamol
moses & zinc_250k
moses & zinc_1m
moses & zinc_10m
moses & chembl
guacamol & zinc_250k
guacamol & zinc_1m
guacamol & zinc_10m
guacamol & chembl
zinc_250k & zinc_1m
zinc_250k & zinc_10m
zinc_250k & chembl
zinc_1m & zinc_10m
zinc_1m & chembl
zinc_10m & chembl

71,675
13,907
1,868
18,579
73,316
2,528
204
2,135
1,093,236
82
908
3,162
966,612
285
2944

2.07%
0.64%
0.06%
0.16%
1.87%
0.14%
0.01%
0.02%
42.64%
0.01%
0.01%
0.14%
9.63%
0.01%
0.02%

Table 3: Overlap of SMILES Data between Various Datasets




Visual Representation of Inter-Dataset Overlap
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Figure 1: Heatmap showing the total overlap of SMILES strings between all
datasets.

Venn Diagram between zinc_1m and zinc_10m
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Figure 2: Venn diagram showing the absolute overlap of SMILES strings be-
tween Zinc 1M and Zinc 10M datasets.



Venn Diagram between chembl, guacamol, and moses
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Figure 3: Venn diagram showing the absolute overlap of SMILES strings be-
tween Guacamol and ChemBL datasets.

Evaluation

In evaluating synthesis-aware generative models for molecular generation, it
is imperative to employ comprehensive benchmarking methodologies that ade-
quately reflect the complexities inherent in molecular discovery. While computa-
tional benchmarks, such as enrichment factors in virtual screening, standardized
tests like Guacamol, and the MOSES (Molecular Sets) benchmark, have signif-
icantly propelled the field forward, they often fall short of capturing the entire
scope of the discovery process, as highlighted by the implications of ” Goodhart’s
law.” These benchmarks serve as proxies and might not entirely encompass the
nuances of molecular discovery. To address these limitations and enhance the
validity of these models, the following multi-dimensional benchmarking strate-
gies are recommended:



e Objective Maximization and Ligand Rediscovery: Assess the ca-
pacity of virtual screening or de novo design algorithms to identify molecules
that optimize given objectives, along with their ability to rediscover known
ligands. Notable benchmarks in this category include Guacamol, vari-
ous virtual screening benchmarks, and the MOSES benchmark, which is
specifically designed for assessing the quality of generative models.

e Synthesis Prediction and Feasibility: Employ CASP tools to predict
synthetic routes or utilize synthesizability scores for generated molecules
to ensure practical feasibility in a laboratory setting.

e Molecule Quality Assurance: Implement quality filters akin to those
used in Guacamol and MOSES to ascertain the reasonableness of the
generated molecules. It is crucial to include visualizations of random,
non-cherry-picked molecular samples in machine learning publications to
provide a transparent and accurate representation of the model’s output.

e Evaluation of Synthesis Planning Algorithms: Conduct both quan-
titative and qualitative assessments of synthesis planning algorithms to
ensure they are efficient, practical, and innovative.

The discussion further delves into the translational impact of these improve-
ments, questioning the real-world applicability of marginal gains observed in
computational benchmarks. Given the often sparse and diverse nature of data
in drug discovery, along with the occurrence of distribution shifts, the need
for robustness in models is paramount. The authors advocate for a balanced
approach towards benchmarking, one that encourages ongoing refinement and
innovation in benchmarking practices without necessarily mandating experimen-
tal validation due to the varying resource capabilities of computational groups.

Recent prospective validations of virtual screening and de novo design of-
fer promising examples of the field’s progress. These include the application of
large enumerated on-demand libraries in virtual screening and the integration
of synthesis planning with computational algorithms, showcasing their utility
particularly in the early stages of discovery. However, the visibility and pub-
lication of such innovations are often delayed in the industrial context due to
proprietary concerns or lack of incentives, highlighting an additional layer of
complexity in benchmarking and validating these models.

In conclusion, while current benchmarks such as Guacamol, virtual screening
benchmarks, and the MOSES benchmark are instrumental in driving advance-
ments in molecular generation models, there is a clear and ongoing need for
developing more nuanced, robust, and comprehensive methodologies. These
should not only reflect the theoretical and computational excellence but also
align closely with practical, real-world utility in the ever-evolving landscape of
drug discovery.



Evaluation Metrics

MOSES Evaluation Metrics

Validity (1): Measures the percentage of generated molecules that are
chemically valid.

Uniqueness (1): Assesses whether the model generates diverse molecules
by calculating the proportion of unique molecules in the generated set.

Novelty (1): Evaluates the model’s ability to generate molecules that are
not present in the training set, indicating the model’s creativity.

Internal Diversity (1): Quantifies the chemical diversity within the gener-
ated set of molecules.

External Diversity (1): Compares the diversity of the generated set to the
diversity of an external set, often the test set.

Fréchet ChemNet Distance (FCD) ({): Uses a deep neural network to
capture chemical and biological properties of compounds and measures
the distance between the generated and real molecules in this learned
feature space.

Fragment and Scaffold Similarity (1): Measures how closely the distribu-
tion of molecular fragments and scaffolds in the generated set matches
that of the reference set.

Similarity to Nearest Neighbor (SNN) (1): Calculates the average Tani-
moto similarity between the generated molecules and their closest coun-
terparts in the reference dataset.

Properties Distribution (J): Compares the distribution of certain molec-
ular properties (like molecular weight, logP, etc.) between the generated
and reference sets using Wasserstein-1 distance.

PyTDC Evaluation Metrics

Diversity (1): The diversity of a set of molecules is defined as the average
pairwise Tanimoto distance between the Morgan fingerprints.

KL divergence ({): KL divergence between the probability distributions
of a variety of physicochemical descriptors for the training set and a set of
generated molecules. Models able to capture the distributions of molecules
in the training set will lead to small KL divergence values. To increase
diversity, we want high KL.

Frechet ChemNet Distance (FCD) ({): FCD first takes the means and
covariances of the activations of the penultimate layer of ChemNet are
calculated for the reference set and for the set of generated molecules. The



FCD is then calculated as the Frechet distance for both pairs of values.
Similar molecule distributions are characterized by low FCD values.

e Novelty (1): Novelty is the fraction of the generated molecules that are
not present in the training set.

e Validity (1): Validity is calculated using RDKit’s molecular structure
parser that checks atoms’ valency and consistency of bonds in aromatic
rings.

Molecule Generation Oracles

e The goal of molecule generation is to create novel molecules with desired
properties, evaluated by oracles based on a machine learning task that
learns from a large dataset.

e Oracles serve as user-defined scoring functions to measure chemical prop-
erties.

e These tools allow for controlled generation, steering the exploration of
chemical space based on user-specified oracle guidance.

e This approach facilitates the discovery of novel candidates by leveraging
the internal representation learned from data.

Physicochemical Properties

e QED (Quantitative Estimate of Drug-likeness): Measures how ”drug-like”
a compound is based on its physicochemical properties.

e LogP: Measures the octanol-water partition coefficient, related to com-
pound solubility and permeability.

Synthetic Accessibility

e SAscore: Evaluates the ease of synthesizing drug-like molecules in virtual
screening. Ranges from 1 (easy to synthesize) to 10 (hard to synthesize).
This score reflects the presence of common fragments in a molecule and
structural complexities. .

e SCScore: The SCScore model rates the synthetic complexity of molecules
on a scale from 1 to 5. Based on the premise that on average, the products
of published chemical reactions should be more synthetically complex than
their corresponding reactants



e SYBA: It is a fragment-based method for the rapid classification of organic
compounds as easy- (ES) or hard-to-synthesize (HS). Based on a Bernoulli
naive Bayes classifier that is used to assign SYBA score contributions to
individual fragments based on their frequencies in the database of ES and
HS molecules. Trained on ES molecules available in the ZINC15 database
and on HS molecules generated by the Nonpher methodology

e RAscore: RAscore is derived using machine learning models that are
specifically trained on data generated by an Al-driven retrosynthetic plan-
ning tool called AiZynthFinder. This training involves predicting whether
a synthetic route can be found for a molecule.

e MPO (Multi-Property Objective): Evaluates compounds against multiple
criteria relevant to drug discovery - contains seven drugs (Osimertinib,
Fexofenadine, Ranolazine, Perindopril, Amlodipine, Sitagliptin, Zaleplon)
where each has various objectives.

Step by Step Guide
1. Install the Hugging Face evaluate library using pip:

pip install evaluate

2. Generate lists 1s_gen and 1s_train, which represent the generated list of
SMILES and the SMILES training dataset, respectively.

3. Load the MolGen/MolEvalMetrics from Hugging Face using:

MolEvalMetrics = evaluate.load("MolGen/MolEvalMetrics")

4. Get the evaluation metrics for the generated set of SMILES by calling the
compute method:

print (MolEvalMetrics.compute(gensmi = ls_gen, trainsmi = ls_train))
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