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ABSTRACT

This thesis investigates the application of deep learning techniques, specifically transformer-
decoder models, in the realm of inverse molecular design, which holds considerable
promise in the field of drug development. The study pivots on the innovative use of
advanced natural language processing (NLP) models, adapting strategies from text
generation to molecular structure generation. Central to our approach is the use of the
SMILES (Simplified Molecular Input Line Entry System) notation, which enables the
representation of molecules as sequences of characters, similar to textual data. This
alignment allows for the application of techniques originally developed for language
models, particularly those based on the Transformer architecture.

Our primary contribution lies in the development and training of a transformer-
decoder model, drawing inspiration from the success of generative pre-training (GPT)
models in text generation. This model is specifically tailored for the generation of drug-
like molecules. A significant aspect of our work involves conditional training, where
the model is trained to incorporate additional information such as molecular scaffolds,
functional groups, and specific physicochemical properties. This approach enables
the generation of molecules that not only resemble drugs but also meet predefined
conditions set by the user.

The methodology employed includes advanced techniques such as next token
prediction and masked self-attention, fundamental to the Transformer model’s ability to
handle sequential data effectively. The performance of our model is rigorously evaluated
through a variety of metrics. These include the validity of the generated molecules, the
Fréchet ChemNet Distance (a measure of similarity to known drug-like molecules), and
internal diversity, which assesses the variety within the generated molecular structures.

The results of this study provide insights into the viability and effectiveness of using
NLP-inspired models in the context of molecular design. By offering a novel tool that
navigates the vast chemical space efficiently under specific conditions, this research
could facilitate a more targeted and expedient approach to drug development. This
work not only showcases the adaptability of text generation models for applications
in chemistry but also sets the stage for future research in the integration of machine
learning and molecular design for pharmaceutical advancements.

Keywords: Inverse Molecular Design, Transformer-Decoder Models, SMILES Notation,
Drug Development, Natural Language Processing

ii



CONTENTS

Contents

1 Introduction

1.1
1.2

Context and Challenges in Drug Discovery . . ... ............

Innovative Approach Using Transformer-Decoder Models . . . . . . ..

2 Brief review of literature

21

2.2
2.3
24

25
2.6

2.7

2.8
29
2.10
211
2.12

MolGenSurvey: A Systematic Survey in Machine Learning Models for
MoleculeDesign. . . . .. ... ... ... .. . L
Comparative Study of Deep Generative Models on Chemical Space Coverage
Generative Models as an Emerging Paradigm in the Chemical Sciences .
Searching for High-Value Molecules Using Reinforcement Learning and
Transformers . . . . . .. ... . L
MolGPT: Molecular Generation Using a Transformer-Decoder Model . .
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Gener-
ationModels . . . ... .. L
Sample Efficiency Matters: A Benchmark for Practical Molecular Opti-
mization . . ... .. e
Reinforced Self-Training (ReST) for Language Modeling . . . . . ... ..
Domain-Agnostic Molecular Generation with Chemical Feedback . . . .
SCScore: Synthetic Complexity Learned from a Reaction Corpus

SYBA: Bayesian estimation of synthetic accessibility of organic compounds
Critical assessment of synthetic accessibility scores in computer-assisted
synthesisplanning . . . . ... .. ... ... .. . o 0 o L

3 Datasets
3.1 Properties of the Datasets . . . ... .....................
311 MOSES. ... .. .
312 Guacamol . .. ... .. ... ...
313 ChemBL . ... ... ... .. . ... ..

3.2

3.14 Zinc Datasets(250k, 1M, 10M, 270M,37B) . . . ... ... ... ..
315 PubChem . .......... ... ... ... .. ... .. .. ..
Dataset Statistics after Processing . . . . . ... ...............

iii

O O 0 N I



CONTENTS

3.3 Inter-DatasetOverlap . . . . ... ... ... ... ....... 13
3.4 DataRepresentations . . . . ... ... ... ... . . ..., 16
34.1 SMILES . .. . . . .. e 16

342 SELFIES . . ... . . . . e 16

343 DeepSMILES . .. ... ... .. ... ... 17

344 SAFE . . . . . e 17

4 Methods 19
4.1 Tokenizers . . . . . . . . e e 19
4.1.1 Atomwise Tokenization . ... ... ................. 19

4.1.2 Kmer Tokenization . . . . .. ... ... ... ... ......... 19

41.3 Byte Pair Encoding (BPE) . . ... ... ...... .. ... .... 20

414 SMILES Pair Encoding (SMILESPE) . . .. ... .......... 20

42 Model . . . . . 20
421 Motivation for Transformer Architecture . ... ... ... .. .. 21

422 Key Equations and Components . . . ... ............. 21

423 GPT-2 Architecture . . . . . ... ... ... ... L. 21

424 Unique Qualities and Advantages . .. ............... 21

425 Relevance to Molecular Design . . . .. ... ............ 22

43 Pre-training . .. ... ... .. .. e 22
44 Pre-training Evaluation . . . . . ... ... ... ... ... ... ... 23
441 Validity. . .. ... . 23

442 Uniqueness . . . . . . ... . ... 23

443 Novelty. . ... ... .. .. . 23

444 Internal Diversity . . . . .. ... ... .. ... .. ... .. ... 24

445 Fréchet ChemNet Distance (FCD) . ... .............. 24

44.6 Lipophilicity (logP) . . . ... ......... .. ... ... 25
447 PenalizedLogP .. ... ... .. ... .. ... .. .. . . ... 25

4.4.8 Quantitative Estimate of Drug-likeness (QED) . . . ... ... .. 25

449 Synthetic Accessibility (SA) Score . . . ... .. ... ... ... 26
4.4.10 Synthetic Complexity Score (SCScore) . . . . ... ... ... ... 26
4411 SYnthetic Bayesian Accessibility (SYBA) Score . . . . .. ... .. 26
4412 Retrosynthetic accessibility score (RAscore) . . . . ... ... ... 26
4.4.13 Fragment and Scaffold Similarity . . . ... ... ... ....... 27
4.4.14 Similarity to Nearest Neighbor SNN) . . . .. ... ... ..... 27
4415 Summary of Model Evaluation Metrics . . . ... ......... 29
4416 Speed Enhancements. . .. ... ... .. .............. 30

4.5 Downstream Fine-Tuning using ReST Framework . . . . . . ... ... .. 31
451 Key Componentsof ReST . . . ... ... ... ... ....... 31

452 Usefulness in Molecular Generation . . . .. ... ......... 31

453 Fine-Tuning .. ... .. ... .. ... . ... .. . . 32

iv



CONTENTS

5 Results

51 Unconditioned Training . . .. ... ... ... ..........
51.1 TrainingCurves . . . .. ... ................
512 GenerationResults . . . ... ... ... ..........
5.1.3 Performance on Evaluation Metrics . . ........ ..
5.2 Conditioned Training - Scaffold . . . . ... ............
521 TrainingCurves . . . ... ..................
52.2 GenerationResults . . ... .................
5.2.3 Performance on Evaluation Metrics . ... ... ... ..
5.3 Conditioned Training - Properties . . . . .. ... ... ... ...
531 TrainingCurves . . . . ... ... .. ... .........
5.3.2 GenerationResults . . ... ... .. .. ... ... ....
5.3.3 Performance on Evaluation Metrics . . ........ ..
5.4 Conditioned Training - Scaffold, Properties . . .. ... ... ..
541 TrainingCurves . . . . ... ... .. ... .........
54.2 GenerationResults . . ... .......... ... ....
5.4.3 Performance on Evaluation Metrics . . .. ... ... ..
5.5 Unconditioned training using GuacaMol Dataset . . . . . . . ..
551 TrainingCurves . . . . ... ... .. ... .........
55.2 GenerationResults . . ... .................
5.5.3 Performance on Evaluation Metrics . ... ........

5.5.4 Comparison - Effect of Dataset on Model Performance

5.6 Downstream Tasks - AlignmenttoQED . . .. ... ... ....

6 Conclusion and Future Work

7 Declaration of Al-assisted technologies in the writing process



1

INTRODUCTION

1.1 Context and Challenges in Drug Discovery

Drug discovery is an essential yet complex process in the pharmaceutical industry,
characterized by high costs, extensive time requirements, and a reliance on traditional
methodologies. The conventional approach predominantly involves screening vast
libraries of compounds to identify potential drug candidates, a process that is both
time-consuming and resource-intensive. Despite the significant investment in these
methods, the success rate for finding effective and safe drugs remains relatively low.
This challenge is further compounded by the ever-increasing complexity of diseases
and the growing demand for more effective treatments.

The concept of inverse molecular design emerges as a novel approach in this context.
It represents a paradigm shift from the traditional screening methods to a more proactive
design of molecules. Inverse molecular design involves the creation of new molecules,
tailored to fit specific therapeutic targets from the outset. However, this approach
introduces a new challenge: navigating the vast and largely unexplored chemical space,
which contains an innumerable number of potential molecular structures. This immense
space presents a significant hurdle, as the manual exploration and design of molecules
within it are practically unfeasible with current methodologies.

1.2 Innovative Approach Using Transformer-Decoder Models

The application of advanced computational techniques, particularly those inspired
by the field of natural language processing (NLP), offers a promising solution to
these challenges. This section introduces the use of transformer-decoder models, a
groundbreaking adaptation from NLP, to the realm of molecular design. These models,
which have shown remarkable success in text generation and understanding, are now
being repurposed to address the complexities of chemical structure generation.
Central to this approach is the use of SMILES (Simplified Molecular Input Line
Entry System) notation, which allows for the representation of chemical structures as
sequences of characters. This notation enables the application of transformer-decoder



1.2. INNOVATIVE APPROACH USING TRANSFORMER-DECODER MODELS

models to molecular design, treating chemical structures in a manner akin to linguistic
sequences. The unique aspect of this methodology lies in its ability to generate novel
molecular structures that are not just random assortments of atoms but are chemically
valid and potentially efficacious as drug candidates.

Further, this research incorporates conditional training into the transformer-decoder
models. This technique enables the models to generate molecules based on specified
conditions, such as desired biological activity, molecular scaffolding, or pharmacokinetic
properties. Such targeted molecule generation could be particularly transformative
for personalized medicine, where treatments need to be tailored to individual patient
profiles. The conclusion of this section underscores the potential of this research to
significantly expedite the drug discovery process, reduce associated costs, and open
new frontiers in the understanding and exploration of chemical space.



y)

BRIEF REVIEW OF LITERATURE

2.1 MolGenSurvey: A Systematic Survey in Machine Learning
Models for Molecule Design

The paper Du et al., 2022 is a detailed exploration of machine learning applications in
molecular design. It comprehensively covers various molecule representation methods,
such as 1D strings, 2D graphs, and 3D geometries. These representations are crucial
for different machine learning models to accurately interpret and generate molecular
structures. The paper also systematically reviews generative models and combinatorial
optimization methods used in molecular design. The methods described in the paper
give insights into generating new molecules and optimizing their properties.

Additionally, the paper categorizes molecule design problems and outlines their se-
tups, inputs, outputs, and objectives. This categorization is beneficial for understanding
how different machine-learning techniques can be applied to specific molecular design
tasks. The review’s focus on the broad spectrum of machine learning applications
in molecular design, including challenges and future opportunities, offers valuable
insights and context for our work.

2.2 Comparative Study of Deep Generative Models on Chemical
Space Coverage

The paper Zhang et al., 2021 proposes a novel metric for evaluating deep molecular
generative models based on the chemical space coverage of a reference dataset, GDB-13.
The performance of the models was compared by calculating what fraction of the
structures, ring systems, and functional groups could be reproduced from the largely
unseen reference set when using only a small fraction of GDB-13 for training. The
results show that the performance of the generative models studied varies significantly
using the benchmark metrics introduced herein, such that the generalization capabilities
of the generative models can be clearly differentiated. The paper also discusses the
validity and repetition rate of the sampled molecules and the analysis of the GDB-13
database. The models benchmarked in this study are recurrent neural networks (RNNs),



2.3. GENERATIVE MODELS AS AN EMERGING PARADIGM IN THE CHEMICAL SCIENCES

autoencoder (AE)-based networks, generative adversarial networks (GANSs), and graph
neural networks (GNNs). The paper provides a useful new metric that can be used for
evaluating and comparing generative models.

2.3 Generative Models as an Emerging Paradigm in the Chemi-

cal Sciences

The paper Anstine et al., 2023 highlights the limitations of traditional computational
approaches to chemical species design, which are often limited by the need to compute
properties for a vast number of candidates. In contrast, generative models aim to
start from the desired property and optimize a corresponding chemical structure. The
paper provides an overview of popular generative algorithms, including generative
adversarial networks, variational autoencoders, flow, and diffusion models. It highlights
key differences between each of the models and provides insights into recent success
stories.

The authors also discuss outstanding challenges for realizing generative modeling
discovered solutions in chemical applications. The paper emphasizes the potential
of generative models in the chemical sciences, driven by the widespread adoption
of machine learning and data-driven research, as well as advances in accelerated
computational power and a well-developed software ecosystem of ML tools. The
authors anticipate that generative models will be crucial for overcoming challenges
across the chemical sciences, leading to a reallocation of human scientific creativity and
accelerating the rate at which solutions to pressing issues are found.

2.4 Searching for High-Value Molecules Using Reinforcement

Learning and Transformers

The study Ghugare et al., 2023 presents ChemRLformer, an innovative RL-based algo-
rithm for molecular design, exploring the effects of text representation and algorithmic
training choices in reinforcement learning (RL). The research involved rigorous exper-
imentation to understand how different text grammars and training methodologies
impact the RL policy’s effectiveness in generating molecules with specific properties.
ChemRLformer is analyzed across 25 molecular design tasks, including complex protein
docking simulations, providing valuable insights into the molecular design problem
space and demonstrating its superior performance compared to previous methods.
ChemRLformer’s development is guided by several key findings: using SMILES no-
tation is more effective than SELFIES, the quality of pretraining molecules is crucial, and
both transformer and RNN architectures exhibit comparable performance. The study
also highlights the benefits of incorporating a hill-climb buffer and Log P regularization,
while cautioning against the use of overly complex methods like KL regularization or in-
tricate actor-critic algorithms, which may not yield proportional benefits. These insights
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provide a roadmap for future molecular design efforts, emphasizing the importance of

molecule quality metrics.

2.5 MolGPT: Molecular Generation Using a Transformer-Decoder
Model

This paper Bagal et al., 2022 presents technical details on the implementation and evalu-
ation of the MolGPT model. MolGPT, based on the transformer-decoder architecture,
is designed to process SMILES strings representing molecular structures. The model
leverages a masked self-attention mechanism, enabling it to learn complex patterns in
molecular data. The authors assess MolGPT’s performance by its ability to generate
molecules that are not only valid and diverse but also adhere to specified chemical
properties, demonstrating its potential for targeted molecular design.

Key experiments in the paper include assessing the model’s capacity to control
multiple properties of the generated molecules, and using saliency maps to interpret the
model’s decision-making process. These saliency maps provide insight into which parts
of the input SMILES strings are most influential in determining the structure of the
generated molecules. This interpretability is crucial for practical applications in drug
discovery and material science, where understanding the rationale behind molecular
design is essential. The study’s results show MolGPT’s effectiveness in generating
molecules that meet specific criteria, marking a significant step in computational
chemistry and molecular modeling.

2.6 Molecular Sets (MOSES): A Benchmarking Platform for
Molecular Generation Models

The research paper Polykovskiy et al., 2018 proposes a dataset and evaluates several
baseline models for generating molecules. The dataset is based on the ZINC Clean
Leads collection and contains 1,936,963 molecules with internal diversity of 0.857.
The baseline models include character-level recurrent neural networks, variational
autoencoders, adversarial autoencoders, junction tree variational autoencoders, and non-
neural baselines. The models are evaluated based on several metrics, including validity,
uniqueness, novelty, internal diversity, fragment and scaffold similarity, similarity to
a nearest neighbor, and Fréchet ChemNet Distance. The results show that the neural
network-based models successfully capture the statistics of the dataset, while the non-
neural baselines fail to produce valid molecules. The study provides a useful benchmark
for future research in generative models for molecules. Technical concepts highlighted
in the paper include SMILES strings, Bemis-Murcko scaffolds, BRICS fragments, Morgan
fingerprints, Kullback-Leibler divergence, Wasserstein-1 distance, and Fréchet ChemNet
Distance.
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OPTIMIZATION

2.7 Sample Efficiency Matters: A Benchmark for Practical Molec-

ular Optimization

The paper Gao et al., 2022 presents an exploration of key technical elements in molecular
design, encompassing an array of string representations for molecules, including
the Simplified Molecular-Input Line-Entry System (SMILES) and SELF-referencing
Embedded Strings (SELFIES), as well as graph-based and synthesis-based strategies for
molecular design. The paper also delves into a variety of optimization algorithms such as
screening, genetic algorithms, Monte-Carlo Tree Search (MCTS), Bayesian optimization,
variational autoencoders (VAEs), and reinforcement learning (RL) techniques. The
study further examines the benchmark framework, which encompasses oracles, metrics,
and the utilized dataset. The primary measure of efficacy is the area under the curve
(AUC) of the top-K average property value in relation to the number of oracle calls (AUC
top-K). An extensive analysis is conducted on the effectiveness of diverse molecular
optimization methodologies, evaluated against the established metrics and oracles.

2.8 Reinforced Self-Training (ReST) for Language Modeling

The paper Gulcehre et al., 2023 introduces Reinforced Self-Training (ReST), a novel
approach in language modeling, particularly focusing on machine translation. ReST
combines reinforcement learning from human feedback (RLHF) with large language
models (LLMs) to align the model outputs more closely with human preferences. The
process involves two distinct steps: Grow and Improve. In the Grow step, ReST generates
a new dataset by sampling outputs from the current model policy. This is critical for
expanding the range of data the model is exposed to. Subsequently, in the Improve
step, the model undergoes fine-tuning using offline reinforcement learning algorithms.
This step is designed to refine the model’s performance based on the newly generated
dataset.

The significance of ReST lies in its ability to improve translation quality significantly,
which has been validated through both automated metrics and human evaluation. This
method stands out for its efficient use of computational resources and sample usage. The
results from the paper suggest that ReST can serve as a powerful tool in enhancing the
alignment of language models with human preferences, thereby improving their efficacy
in real-world applications. This methodology could potentially revolutionize the way
machine translation and other language processing tasks are approached, offering a
more nuanced and human-aligned performance.
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2.9 Domain-Agnostic Molecular Generation with Chemical
Feedback

In this paper, Fang et al., 2024 introduced MOLGEN, a novel pre-trained molecular
language model. This model stands out due to its domain-agnostic pre-training approach
and its integration of a chemical feedback paradigm. This framework helps ensure
the generation of chemically valid molecules that are structurally sound and exhibit
expected chemical activity.

MOLGEN employs the SELFIES (Self-referencing Embedded Strings) molecular lan-
guage, which guarantees chemically sound molecular structures, unlike the traditional
SMILES notation which can lead to syntactically incorrect strings. It also introduces
the “Chemical Feedback Paradigm", which addresses the issue of "molecular hallucina-
tions," where structurally correct molecules generated by the model do not exhibit the
anticipated chemical properties. By aligning the model’s generative probabilities with
real-world chemical preferences, MOLGEN can effectively rectify its outputs, enhancing
both their chemical validity and practical utility.

For both targeted molecule discovery and constrained molecular optimization tasks,
chemical feedback paradigm was employed to align the PLM with the optimization
objectives. In the molecule discovery experiments, MOLGEN set new benchmarks
by optimizing properties like penalized logP and QED (quantitative estimate of drug-
likeness).

210 SCScore: Synthetic Complexity Learned from a Reaction
Corpus

This study by Coley et al., 2018 introduces the Synthetic Complexity Score (SCScore), a
pioneering metric developed to evaluate the synthetic complexity of molecules. This
metric is derived through a neural network that has been trained on a vast dataset from
the Reaxys database, comprising over 12 million reactions. The SCScore quantifies
synthetic complexity based on the number of steps required from standard starting
materials. A key feature of the SCScore is its reaction-centric evaluation methodology,
which scores molecules within the context of their synthetic pathways rather than in

isolation.

The model underpinning the SCScore employs molecular fingerprints and is trained
using a hinge loss function, ensuring that products are consistently evaluated as more
complex than their reactants. The efficacy of the model was tested using a specific subset
from the Reaxys database, validating its ability to accurately differentiate between the
complexities of reactants and products. By grounding the model in such a robust dataset,
the SCScore reduces the subjective biases often associated with expert evaluations, thus
providing a scalable and objective metric.



2.11. SYBA: BAYESIAN ESTIMATION OF SYNTHETIC ACCESSIBILITY OF ORGANIC
COMPOUNDS

211 SYBA: Bayesian estimation of synthetic accessibility of

organic compounds

Vorsildk et al., 2020 introduced the SYBA (SYnthetic Bayesian Accessibility) model,
an innovative fragment-based scoring system for rapidly classifying organic com-
pounds as either easy-to-synthesize (ES) or hard-to-synthesize (HS). Unlike traditional
complexity-based metrics that often misjudge the synthetic accessibility based on struc-
tural complexity alone, SYBA utilizes a Bernoulli naive Bayes classifier that computes
synthetic accessibility based on the presence and absence of molecular fragments.

SYBA showed an improvement over random forest classification and outperformed
SAScore and SCScore with default threshold settings. For instance, SYBA achieved
a classification accuracy of 0.844 and an area under the ROC curve (AUC) of 0.903
when compared against manually curated test sets. However, SYBA’s assumption that
molecular fragments are independent can be a simplification that doesn’t always hold
true, potentially affecting the accuracy in more complex molecular structures. While
SYBA performs well with default thresholds, the performance of other methods like
SAScore significantly improves upon threshold optimization, suggesting that SYBA
might face competition if other methods are optimally tuned.

212 Critical assessment of synthetic accessibility scores in

computer-assisted synthesis planning

In this paper, Skoraczynski et al., 2023 perform an analysis of the effectiveness of synthetic
accessibility scores (SAscore, SYBA, SCScore, and RAscore) in predicting and enhancing
the efficiency of computer-assisted synthesis planning (CASP). It critically assesses
whether these scores can reliably predict the outcomes of retrosynthesis planning, and if
they can enhance the efficiency of retrosynthesis by prioritizing viable synthetic routes,
thereby reducing the search space. The study employs AiZynthFinder, a CASP tool, to
test the accuracy of these scores in predicting the feasibility of chemical syntheses.

Results indicate that synthetic accessibility scores are generally effective in discrimi-
nating between feasible and infeasible molecules, with implications for improving the
rapidity and precision of CASP tools. The study reveals that synthetic accessibility
scores, particularly SAscore and RAscore, effectively predict synthesizability with high
accuracy. SAscore and RAscore demonstrate AUC values of 0.90 and 0.85, respectively,
and accuracy rates of 0.81 and 0.85, suggesting that these models can significantly
influence the prioritization process within CASP tools. However, the effectiveness
of integrating these scores into the selection process within AiZynthFinder did not
markedly improve performance, indicating that further refinement and integration
methods might be necessary.
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DATASETS

3.1 Properties of the Datasets

3.1.1 MOSES

The MOSES dataset Polykovskiy et al., 2018 is a curated collection from the ZINC
database, focusing specifically on the ZINC Clean Leads collection. It comprises
4,591,276 molecules, each selected based on specific criteria: a molecular weight between
250 and 350 Daltons, no more than 7 rotatable bonds, and an XlogP value of 3.5 or less.
The dataset excludes molecules with charged atoms or atoms other than C, N, S, O, F,
Cl, Br, and H. It also omits molecules with cycles longer than 8 atoms. Additionally, the
selection process involved the application of medicinal chemistry filters (MCFs) and
PAINS filters, ensuring the dataset’s relevance for benchmarking in medicinal chemistry
and drug discovery.

3.1.2 Guacamol

The GuacaMol dataset Brown et al., 2019 is derived from the ChEMBL 24 database,
known for its synthesized and biologically tested molecules. This dataset offers a
more realistic representation of drug-like molecules compared to others like ZINC or
QM9. The refining process includes removing salts, neutralizing charges, excluding
molecules with overly long SMILES strings or less frequently occurring elements, and
filtering based on similarity to a set of known drugs. The result is a dataset tailored for
benchmarking in drug discovery, available for download with reproducible creation
through a provided docker container.

3.1.3 ChemBL

The ChEMBL database Zdrazil et al., 2023 is a comprehensive resource for drug discovery,
offering detailed bioactivity data, chemical structures, and target information for a
wide range of drug-like compounds. It includes quantitative measurements such as
IC50 and EC50, data on approved drugs, and is regularly updated. Widely accessible

10
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to researchers, ChEMBL is invaluable for medicinal chemistry and pharmacological

research.

3.1.4 Zinc Datasets(250k, 1M, 10M, 270M, 37B)

The ZINC database Tingle et al., 2023 is a comprehensive collection of commercially
available chemical compounds for virtual screening and drug discovery. ZINC-22 is a
vast database of small molecules for ligand discovery, featuring a user-friendly interface,
CartBlanche, for efficient analog searching. It efficiently handles the vast chemical
space by using scalable search methods and rapid data access techniques. Despite its
rapid growth, ZINC-22 continues to show increasing chemical diversity, particularly in
complex compounds. The database, anticipating expansion to over a trillion molecules,
is freely accessible online and is pivotal for future molecule docking and discovery.

3.1.5 PubChem

PubChem Kim et al., 2023 is a widely-used public repository for chemical molecules and
their activities, primarily aimed at supporting the fields of drug discovery and chemical
biology. This extensive database is maintained by the National Center for Biotechnology
Information (NCBI) and features a vast collection of chemical compounds, substances,
and bioactivity data.

11
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3.2 Dataset Statistics after Processing

The initial step in processing the datasets involved cleansing them to eliminate any
redundant records found within each dataset. Subsequently, we implemented the
standardization of the SMILES (Simplified Molecular Input Line Entry System) strings.
Additionally, a new column was introduced, displaying the SELFIES (Self-referencing
Embedded Strings) corresponding to each molecule. In the final phase of data prepa-
ration, we removed all extraneous columns from the dataset that were not pertinent
to our analysis. The statistics of of the datasets is highlighted in 3.1 and Table 3.2, and
visualised in Figure 3.1, 3.2 and 3.3.

Dataset Number of Rows | File Size
zinc_250k 249 455 18.18 MB
zinc_1m 999,998 72.13 MB
moses 1,936,962 93.42 MB
guacamol 1,591,011 140.94 MB
chembl 2,066,232 189.25 MB
zinc_10m 9,999,971 722.37 MB
pubchem 114,850,452 2.54 GB
zinc_270m 269,536,671 12.5 GB

Table 3.1: Datasets Information Sorted by File Size

12
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3.3 Inter-Dataset Overlap

Dataset Pair

Overlap (Absolute)

Overlap (%)

moses & guacamol
moses & zinc_250k
moses & zinc_1m
moses & zinc_10m
moses & chembl
guacamol & zinc_250k
guacamol & zinc_1m
guacamol & zinc_10m
guacamol & chembl
zinc_250k & zinc_1m
zinc_250k & zinc_10m
zinc_250k & chembl
zinc_1m & zinc_10m
zinc_1m & chembl

zinc_10m & chembl

71,675
13,907
1,868
18,579
73,316
2,528
204
2,135
1,093,236
82
908
3,162
966,612
285
2944

2.07%
0.64%
0.06%
0.16%
1.87%
0.14%
0.01%
0.02%
42.64%
0.01%
0.01%
0.14%
9.63%
0.01%
0.02%

Table 3.2: Overlap of SMILES Data between Various Datasets

13
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Figure 3.1: Heatmap showing the total overlap of SMIILES strings between all datasets.

Venn Diagram between zinc_1m and zinc_10m
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zinc_10m

Figure 3.2: Venn diagram showing the absolute overlap of SMILES strings between Zinc 1M and Zinc
10M datasets.
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Venn Diagram between chembl, guacamol, and moses

chembl

guacamol

moses

Figure 3.3: Venn diagram showing the absolute overlap of SMILES strings between GuacaMol and
ChemBL datasets.
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3.4 Data Representations

The choice of molecular representation significantly impacts the effectiveness of machine
learning models in molecular generation. Various representations capture different
aspects of molecular structures, and each has its advantages and disadvantages. Below,
we describe the four primary types of molecular representations used in this project.

3.4.1 SMILES

The Simplified Molecular Input Line Entry System (SMILES) Nath et al., 2021 is a widely
used notation that encodes molecular structures as linear strings. Each string uniquely
represents a molecule, detailing atoms and the bonds between them. SMILES strings
are compact and human-readable, making them convenient for various computational
applications.

Advantages:

¢ Human-readable and compact.
¢ Widely supported and used in cheminformatics tools and databases.
¢ Efficient for storing and processing large datasets.

Disadvantages:

¢ Sensitive to syntax errors; small mistakes can lead to invalid structures.
* Multiple valid SMILES representations for the same molecule can complicate

model training and evaluation.

Example: For benzene, the SMILES representation is:

“clcccecl”

3.4.2 SELFIES

SELFIES (Self-Referencing Embedded Strings) Krenn et al., 2020 are a more robust
alternative to SMILES, designed to ensure that every possible string is a valid molecule.
SELFIES address the syntactical issues inherent in SMILES by using a different encoding
mechanism that inherently guarantees valid chemical structures.

Advantages:

¢ Ensures syntactic validity of all generated strings.
* Can be converted to and from SMILES without loss of information.

Disadvantages:

¢ Not as human-readable as SMILES.
¢ Slightly longer strings compared to SMILES.
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Example: For benzene, the SELFIES representation might be:

"[[CI=CICI[=C][C][=C][Ring1][=Branch1]"

3.4.3 DeepSMILES

DeepSMILES O’Boyle et al., 2018 modifies the SMILES notation to improve its suitability
for machine learning applications by addressing common syntactical issues. It simplifies
the representation by using a single character for ring closures and postfix notation for
branches, thus avoiding unbalanced parentheses and unmatched ring closure digits.

Advantages:

¢ Reduces common syntactical errors found in SMILES.
¢ Maintains compactness while being more suitable for machine learning models.

Disadvantages:

* Requires understanding of the modified notation.
¢ Conversion to and from traditional SMILES is necessary for compatibility with
existing tools.

Example: For benzene, the DeepSMILES representation is:

"cceecch”

3.44 SAFE

SAFE (Structure-Aware Fragment Embeddings) Noutahi et al., 2024 is a newer approach
that encodes molecular structures by considering both atomic and substructural infor-
mation. This representation aims to capture more chemical context and improve the

quality of generated molecules.

Advantages:

* Encodes both atomic and substructural information, capturing more chemical
context.
¢ Potentially improves the quality and validity of generated molecules.

Disadvantages:

* More complex encoding process.
* Requires specific decoding mechanisms to revert to standard representations.

Example: For benzene, the SAFE representation would use a structure-aware encoding
that is not as straightforward as a simple string but would involve more detailed chemical
context capturing fragments and their relationships.
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Tokenization and data representation are pivotal in molecular generation projects as
they determine how chemical information is fed into models. The choice of representation
affects the model’s ability to learn and generate novel, valid, and drug-like molecules
effectively.
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METHODS

4.1 Tokenizers

Tokenization is a crucial step in the preprocessing of molecular data for generative
models. In the context of molecular generation, tokenization involves converting
the chemical structure of a molecule, typically represented by a SMILES (Simplified
Molecular Input Line Entry System) string, into a sequence of tokens that can be
processed by deep learning models. Effective tokenization can capture the chemical
structure and properties of molecules, thereby improving the performance of generative
models. Different tokenization methods can impact the efficiency and accuracy of the
model, as they determine how the molecular information is represented.

4.1.1 Atomwise Tokenization

Atomwise tokenization involves breaking down a SMILES string into individual atoms
and special characters, which represent bonds and branching. Each character in the
SMILES string is treated as a separate token. For example, the SMILES string for benzene,
"clecececl"”, would be tokenized as:

[ICI, /1’/ IC// /Cl/ IC// ICI/ IC/, Ill]
This method captures the atomic structure of the molecule but might lose some
information about the connectivity and substructures.
4.1.2 Kmer Tokenization

Kmer tokenization breaks down the SMILES string into overlapping substrings of length
k. This method captures more contextual information than atomwise tokenization. For
example, using a k-mer length of 2 (bi-gram) and 3 (tri-gram) for the SMILES string
"clcccecl”, the tokenized output would be:

[/Cll’ llcl, /CCI’ /CCI’ /CC’, /Cll]
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For a k-mer length of 3 (tri-gram):

[‘clc’, “1ec’, “cec’, “cec’, “ccl’]

Kmer tokenization helps in preserving local structures and patterns within the

molecule.

4.1.3 Byte Pair Encoding (BPE)

Byte Pair Encoding (BPE) Gallé, 2019 is a subword tokenization method that iteratively
merges the most frequent pairs of characters or substrings. This method effectively
compresses the SMILES string into fewer tokens, capturing more information per token.
BPE can capture common substructures and recurring patterns in the molecular data.
For example, the SMILES string "clcccecl” might be tokenized by BPE as:

[/Cl, /1// /CCCCCI, /1/]

This result depends on the dataset used to train the tokenizer, as the most commonly
occurring patterns can vary between different datasets.

4.1.4 SMILES Pair Encoding (SMILESPE)

SMILES Pair Encoding (SMILESPE) X. Li et al., 2021 is inspired by the byte-pair-encoding
(BPE) tokenization and is a vaiant of BPE specifically designed for tokenizing SMILES
strings. It merges pairs of characters or substrings based on their frequency in a training
corpus of SMILES strings. SMILESPE is designed to optimize the tokenization process
for chemical structures, capturing both common substructures and chemical motifs.

4.2 Model

In our work, we use an adaptation of the Generative Pre-Training-2 (GPT-2) Transformer,
with 345M parameters. It features an architecture of stacked decoder blocks, each
containing a masked self-attention layer and a fully connected neural network. The
self-attention layers produce 256-sized vectors, processed by the neural network with
a hidden layer outputting 1024-sized vectors, followed by a GELU activation layer.
The final output of each block is a 256-sized vector, fed into the subsequent decoder
block, with a total of eight such blocks in the model. The model assigns position value
embeddings to track input sequence order and uses separate embeddings for condition
and SMILES tokens during conditional training, distinguishing between the two. These
embeddings are combined into a 256-dimensional vector for each token in the SMILES
string, which then serves as the model’s input. This architecture enables MolGPT to
efficiently process and generate molecular structures.
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4.2.1 Motivation for Transformer Architecture

The transformer model, introduced by Vaswani et al., 2017 in their seminal paper Atten-
tion Is All You Need, addressed limitations in sequence-to-sequence models dependent
on recurrent neural networks (RNNs) and convolutional neural networks (CNNs). The
transformer model overcomes issues like vanishing gradients and inefficient paralleliza-
tion through a novel self-attention mechanism, enabling simultaneous processing of
input data sequences.

4.2.2 Key Equations and Components
Self-Attention Mechanism

The self-attention mechanism in the transformer model allows each position in the
encoder to attend to all positions in the previous layer of the encoder. It is defined as:

Attention(Q, K, V) = softmax (QKT) |4 4.1)
o Vi '

where Q, K, and V are the query, key, and value matrices, respectively, and dj is the
dimension of the key vectors.

Multi-Head Attention

Multi-head attention allows the model to jointly attend to information from different
representation subspaces:

MultiHead(Q, K, V) = Concat(headys, . .., head;,)W© 4.2)
where each head is defined as:
head; = Attention(QW?, KWK, VW) (4.3)

and where the projections are parameter matrices Wl.Q € RmodeXdr, WZ.K € RfmodaXdr,
WiV € RdmodeleU, and WO € thUdeodel_

4.2.3 GPT-2 Architecture

Developed by OpenAl, Generative Pre-trained Transformer 2 (GPT-2) Radford et al., 2019
builds upon the transformer architecture for text generation. It features an autoregressive
model trained on a large corpus of text, enabling it to generate coherent and contextually
relevant sequences.

4.2.4 Unique Qualities and Advantages

¢ Parallel Processing: The transformer model processes elements of input data
simultaneously, leading to efficient training.

* Handling of Long-Range Dependencies: Through self-attention, the model
effectively captures dependencies, regardless of their position in the input sequence.

* Versatility: Adaptable to a wide range of tasks beyond NLP.
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4.2.5 Relevance to Molecular Design

In molecular design, the transformer’s ability to process sequential data and its powerful
attention mechanism make it ideal for handling SMILES notation. GPT-2’s autoregressive
nature (Radford et al., 2019) and extensive pre-training allow for effective generation of

novel molecular structures, crucial for exploring the vast chemical space.

Next token
(Atom)

[ Decoder Block

[ Decoder Block

GPT-2

Architecture seeseeisasetateetsetiteiiesinees -

1
( Masked Self Attention ]
Scaffold/ Functional Group/ Autoregressively generated string of
Property Condition atoms

+ + + + + + + + + + +

( o )€ 1 ) —> Segment Token
+ + + + + + +

1, 2 3/ 4| 5| .. | 54 | —» Position Token

Figure 4.1: Model Architecture (Bagal et al., 2022)

4.3 Pre-training

Each model underwent training for 20 epochs using the Adam optimizer with a learning
rate set at 6e-4. The use of the Adam optimizer was chosen for its effectiveness in
computational efficiency and fast convergence. The learning rate was determined to
offer an optimal balance between convergence speed and accuracy.

The model (as shown in Figure 4.1) was both trained and tested using the MOSES
bench-marking dataset Polykovskiy et al., 2018 to provide a comprehensive basis for
evaluating the model’s performance.

For the generation process, the approach involved the use of a start token, selected
randomly from the initial tokens of molecules in the training dataset. This strategy was
employed to ensure that the generation of molecular structures began from a diverse
range of starting points, reflecting the variability in the dataset.

Additionally, experiments were conducted to test the model’s ability to control
molecular properties as well as the model’s effectiveness in generating desired scaffold
and functional group structures within molecules. The training of these models was
performed using an NVIDIA GeForce GTX 1080 Ti graphics card.
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4.4 Pre-training Evaluation

4.4.1 Validity

The validity metric is crucial in the evaluation of de-novo molecular generation models
as it measures the proportion of generated molecules that are chemically valid. A
molecule is considered valid if it adheres to chemical rules and can be successfully
parsed and sanitized by cheminformatics tools like RDKit. In our approach, the validity
is calculated by converting each generated SMILES string to an RDKit molecule object
and checking if the conversion is successful. The formula for validity can be expressed
as:

Validity = Nvaiid (4.4)

total
where Nyalig is the number of valid molecules and Ny, is the total number of
generated molecules. A higher validity score indicates that the model generates more
chemically plausible molecules, which is essential for further downstream tasks and
practical applications in drug discovery. Typically, a validity score close to 1 is desirable,
indicating that nearly all generated molecules are valid.

4.4.2 Uniqueness

The uniqueness metric evaluates the diversity of the generated molecules by measuring
the proportion of unique molecules within the set of generated SMILES strings. This
metric ensures that the model does not produce redundant or identical molecules, which
is important for discovering novel chemical compounds. To calculate uniqueness, we
first canonicalize the SMILES strings to a standard form and then count the number of
distinct canonical SMILES. The formula for uniqueness is given by:
Uniqueness = M (4.5)
total
where Nunique i the number of unique canonical SMILES and Ny is the total
number of generated molecules. A higher uniqueness score indicates a greater diversity
in the generated molecules, which is desirable for exploring a wide chemical space.
Typically, a uniqueness score close to 1 is desirable, indicating that most of the generated
molecules are unique.

4.4.3 Novelty

The novelty metric assesses the ability of the model to generate new and previously
unseen molecules by comparing the generated molecules to a set of molecules from
the training data. Novelty is crucial for de-novo molecular generation as it measures
the extent to which the model can explore new areas of the chemical space beyond the
training data. To calculate novelty, we first canonicalize the SMILES strings of both
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the generated molecules and the training set. The novelty score is then determined by
identifying the proportion of generated molecules that are not present in the training
set. The formula for novelty is:

|gen_smiles_set \ train_set]|

Novelty = (4.6)

|gen_smiles_set]|

where |gen_smiles_set \ train_set| represents the number of unique generated
molecules not found in the training set, and |gen_smiles_set| is the total number
of unique generated molecules. A higher novelty score indicates that the model is
capable of generating a larger proportion of new molecules, which is essential for
innovation in drug discovery. A novelty score close to 1 is desirable, indicating that
most of the generated molecules are novel compared to the training data.

4.4.4 Internal Diversity

The internal diversity metric assesses the variability among the generated molecules
by measuring the pairwise dissimilarity between them. This metric is important for
evaluating whether the generated molecules cover a broad chemical space, which
is desirable for discovering a wide range of novel compounds. Internal diversity is
calculated using the Tanimoto similarity between the fingerprint representations of the
generated molecules. The internal diversity score is given by:

1
Internal Diversity = 1 - R Z Tanimoto(x, y) 4.7)
x,y€G

where |G| is the number of generated molecules, and Tanimoto(x, y) is the Tanimoto
similarity between the fingerprints of molecules x and y. A higher internal diversity
score indicates a greater variety among the generated molecules, which is beneficial for
exploring different chemical structures. Typically, an internal diversity score close to 1
is desirable, indicating that the generated molecules are highly diverse.

44.5 Fréchet ChemNet Distance (FCD)

The Fréchet ChemNet Distance (FCD) Preuer et al., 2019 is a metric used to compare
the distribution of generated molecules to that of a reference set, typically the training
set. FCD evaluates the chemical realism and diversity of the generated molecules by
computing the Fréchet Distance between feature vectors obtained from a pre-trained
neural network, such as ChemNet. This metric is analogous to the Fréchet Inception
Distance (FID) used in image generation tasks. The FCD score is given by:

FCD = |lug — ||’ + Tr(Zg + T — 2(Z4Z0)'?) (4.8)

where p, and u; are the mean feature vectors of the generated and training sets,
respectively, and X, and X; are their corresponding covariance matrices. A lower FCD
score indicates a higher similarity between the generated and training set distributions,
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suggesting that the generated molecules are more chemically realistic and diverse.
Typically, a lower FCD score is desirable, indicating that the model generates molecules
with a distribution close to the real molecules in the training set.

4.4.6 Lipophilicity (logP)

Mannhold et al., 2009 The LogP metric measures the hydrophobicity of molecules,
defined as the logarithm of the partition coefficient between octanol and water. It is a
crucial property in drug discovery, as it affects the absorption, distribution, metabolism,
and excretion (ADME) of a molecule. For a small molecule drug to be a candidate for
oral administration, the LogP value typically should be between 0 and 5. The LogP
value is computed using RDKit’s Crippen estimation method. A higher LogP value
generally indicates higher hydrophobicity. For drug-like molecules, a LogP value within
the range of 0 to 5 is considered optimal, balancing solubility and permeability.

4.4.7 Penalized LogP

The penalized LogP metric combines the hydrophobicity of a molecule with penalties
for synthetic accessibility (SA) and the presence of long cycles, providing a more
comprehensive evaluation of the molecule’s drug-likeness. Penalized LogP is calculated
as the LogP value minus the SA score and a penalty for the number of long cycles. This
metric helps identify molecules that are not only hydrophobic but also synthetically
teasible and structurally desirable. The formula for penalized LogP is given by:

Penalized LogP = LogP — SA score — Long Cycle Penalty (4.9)

where LogP is the hydrophobicity measure, SA score evaluates the ease of synthetic
accessibility, and Long Cycle Penalty accounts for the presence of large ring structures
which are typically less drug-like. A higher penalized LogP score indicates that the
molecule has a good balance of hydrophobicity, synthetic accessibility, and structural
properties, making it a better candidate for drug development.

4.4.8 Quantitative Estimate of Drug-likeness (QED)

The Quantitative Estimate of Drug-likeness (QED) Bickerton et al., 2012 metric evaluates
how likely a molecule is to be a viable candidate for a drug based on certain desirable
traits that successful drug molecules tend to possess. The QED score ranges from 0 to 1,
where a score closer to 1 indicates a higher likelihood that the molecule is drug-like.
The QED score combines multiple molecular properties such as molecular weight,
lipophilicity (LogP), polar surface area, and the number of hydrogen bond donors and
acceptors, among others. A higher average QED score indicates that the generated
molecules possess characteristics commonly associated with successful drugs, making
them more promising candidates for further development.
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4.4.9 Synthetic Accessibility (SA) Score

The Synthetic Accessibility (SA) score Murthy, 2021 estimates the ease of synthesizing
a molecule, ranging from 1 (easy) to 10 (hard). It combines fragment contributions,
derived from a large dataset of molecules in PubChem, with penalties for molecular
complexity, including large rings, non-standard ring fusions, stereocomplexity, and
molecule size. The SA score helps identify molecules that are not only drug-like but
also synthetically feasible. A lower average SA score is preferable, indicating that the
molecules are easier to synthesize.

4.410 Synthetic Complexity Score (SCScore)

The Synthetic Complexity Score (SCScore) Coley et al., 2018 rates the synthetic complexity
of molecules on a scale from 1 to 5, where a higher score indicates greater synthetic
complexity. This metric is based on the premise that, on average, the products of
published chemical reactions are more synthetically complex than their corresponding
reactants. The SCScore helps in evaluating how challenging it would be to synthesize
a molecule, considering both its structural features and the likelihood of successful
synthesis. A lower average SCScore is preferable, indicating that the molecules are less
synthetically complex and therefore easier to synthesize.

4.4.11 SYnthetic Bayesian Accessibility (SYBA) Score

The SYnthetic Bayesian Accessibility (SYBA) score Vorsilak et al., 2020 is a fragment-
based method used to rapidly classify organic compounds as easy-to-synthesize (ES) or
hard-to-synthesize (HS). This score is based on a Bernoulli naive Bayes classifier that
assigns SYBA score contributions to individual fragments based on their frequencies in
databases of ES and HS molecules. The SYBA score is trained on ES molecules from the
ZINC15 database and HS molecules generated by the Nonpher methodology. The SYBA
score provides a measure of the synthetic accessibility of a molecule, with a higher score
indicating easier synthesis. A higher average SYBA score indicates that the generated
molecules are generally easier to synthesize.

4.4.12 Retrosynthetic accessibility score (RAscore)

The RAscore metric Thakkar et al., 2021 evaluates the synthetic accessibility of molecules
using a machine learning model trained on a large dataset of reaction data. This score
predicts the ease of synthesizing a molecule based on its structure, with the aim of
identifying compounds that are more feasible to produce in a laboratory setting. The
RAscore ranges from 0 to 1, where a higher score indicates easier synthesis. A higher
average RAscore suggests that the generated molecules are easier to synthesize, making
them more suitable for practical applications in drug discovery and development.
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4.4.13 Fragment and Scaffold Similarity

The Fragment and Scaffold Similarity metrics evaluate how closely the fragments and
scaffolds of the generated molecules resemble those of a reference set, typically the
training set. These metrics help ensure that the generated molecules are chemically
relevant and maintain structural features common to known compounds.

Fragment similarity is calculated using the BRICS fragmentation method, which decom-
poses molecules into smaller, synthetically relevant fragments. The similarity score is
determined by comparing the frequency of fragments in the generated molecules to
those in the reference set. The average fragment similarity can be computed as:

N
1
Average Fragment Similarity = N Z Similarity(F;, Fref) (4.10)
i=1
where F; represents the fragments of the i-th generated molecule and F,¢ represents
the fragments of the reference set.

Scaffold similarity measures the resemblance of the core structural frameworks (scaf-
folds) of the generated molecules to those of the reference set. The Bemis-Murcko
scaffold extraction method is used to identify these scaffolds. The similarity score is
calculated by comparing the frequency of scaffolds in the generated molecules to those
in the reference set. The average scaffold similarity can be computed as:

N
. 1 .

Average Scaffold Similarity = N Z Similarity(S;, Sref) (4.11)

i=1
where S; represents the scaffold of the i-th generated molecule and S,.f represents
the scaffolds of the reference set. A higher similarity score indicates that the gener-
ated molecules maintain structural characteristics similar to those in the training set,

enhancing their chemical relevance.

4.4.14 Similarity to Nearest Neighbor (SNN)

The Similarity to Nearest Neighbor (SNN) metric Ertoz et al., 2002 evaluates how similar
each generated molecule is to its nearest neighbor in a reference set, typically the training
set. This metric helps ensure that the generated molecules are relevant and within the
chemical space of known compounds.

SNN is calculated by first computing the molecular fingerprints of both the generated
and reference molecules. For each generated molecule, the Tanimoto similarity to every
molecule in the reference set is calculated, and the highest similarity score (i.e., the
nearest neighbor) is recorded. The average SNN score is given by:

N
1
Average SNN = — Z max Tanimoto(F;, F;) (4.12)
N i/
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where N is the number of generated molecules, F; is the fingerprint of the i-th
generated molecule, and F; is the fingerprint of the j-th reference molecule. A higher
SNN score indicates that the generated molecules are more similar to known compounds,
suggesting they are within a familiar and relevant chemical space.
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4.4.15 Summary of Model Evaluation Metrics

Table 4.1 summazies the evaluation metrics prepared, their significance, the range of

values they can take and the target values for obtaining drug-like behaviour in the

generated molecules.

reference set

Metric Description Range of Values | Desired Range

Validity Proportion of chemically valid Oto1l Closeto 1
molecules

Uniqueness Proportion of unique molecules Oto1l Close to 1

Novelty Proportion of molecules not in Oto1l Close to 1
the training set

Internal Diversity Pairwise dissimilarity among Oto1l Close to 1
generated molecules

FCD Distribution  similarity = be- 0 to o Lower values
tween generated and reference
molecules

LogP Hydrophobicity of molecules 00 to oo 0to5

Penalized LogP LogP adjusted for synthetic acces- oo to oo Higher values
sibility and structural penalties

QED Drug-likeness score combining Oto1l Close to 1
multiple molecular properties

SA Score Ease of molecule synthesis 1to 10 Lower values

SCScore Synthetic complexity of 1to5 Lower values
molecules

SYBA Score Synthetic accessibility using Otol Higher values
Bayesian classifier

RAscore Synthetic accessibility using reac- Oto1l Higher values
tion data

Fragment Similarity | Similarity of fragments to refer- Oto1l Higher values
ence set

Scaffold Similarity | Similarity of scaffolds to refer- Oto1l Higher values
ence set

SNN Similarity to nearest neighbor in Oto1l Higher values

Table 4.1: Summary of Model Evaluation Metrics
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4.416 Speed Enhancements

To facilitate the selection of high-quality molecules from a large corpus of molecular
data, it is essential to score them using the aforementioned metrics and filter out
the best set of molecules for model training. However, some of these metrics can
be computationally intensive and time-consuming. For a sample of 5000 molecules

evaluated, the computational times are recorded in table 4.2.

Table 4.2: Time Taken to Compute Various Metrics for 5000 Molecules

To address this potential challenge, we have implemented several metrics in Rust/C++
to enhance the computation speed. Specifically, we utilized the C++ implementation of
the RDKit library. The following table 4.3 highlights the speed-up results achieved:

Metric Time Taken (seconds)
FCD 88.19
SCScore 21.71
Penalized LogP 20.99
SA 19.53
Internal Diversity | 10.67
QED 4.54
SYBA 4.52
LogP 1.53
Uniqueness 0.88
Novelty 0.84
Validity 0.55

Metric Compute Speed Enhancement
FCD, SCScore Can be run on GPUs to speed up the computation
LogP 9x speed up achieved on C++

Internal Diversity

6x speed up achieved on C++

Validity Similar performance in Python and C++
Uniqueness Similar performance in Python and C++
Novelty Similar performance in Python and C++

Table 4.3: Metric Computation Speed Enhancement
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4.5 Downstream Fine-Tuning using ReST Framework

Reinforced Self-Training (ReST) Gulcehre et al., 2023 is a cutting-edge algorithm designed
to optimize large language models (LLMs) by leveraging principles of reinforcement
learning (RL) from feedback. This framework integrates dataset generation with policy
improvement, offering a robust method to align models with specific desired outcomes,
even in domains requiring high-quality outputs like molecular generation.

451 Key Components of ReST

The ReST method consists of two main components (Figure 4.2):

Grow Step: In the Grow Step, the current policy (model) generates a new dataset by
sampling multiple output sequences for each context from the original dataset. For
molecular generation, this involves creating diverse molecular structures based on
existing ones. This step enriches the dataset with varied samples, enabling the model to
learn from a broader range of molecular configurations.

Improve Step: The generated samples are evaluated using a reward model that
scores each sample based on desired properties (e.g., drug-likeness, specific therapeutic
activities). Samples with high scores are selected to fine-tune the model. This iterative
process, with increasingly stringent thresholds, progressively refines the model’s output
quality.

Grow step

Repeat
G-step

Improve step

Filter + finetune

Figure 4.2: ReST method (Gulcehre et al., 2023)

4.5.2 Usefulness in Molecular Generation
ReST’s framework is particularly beneficial for optimizing molecular generation models

to meet specific objectives. Here’s how it can be leveraged:

Optimization of Desired Properties: ReST can use oracles that score molecules based
on drug-likeness metrics, fine-tuning the model to generate molecules that are more
likely to be viable drug candidates. Additionally, ReST can optimize models to generate
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molecules with specific therapeutic properties, such as anti-malarial or anti-fungal
activities, by using oracles tailored to these properties.

Effective Use of Small Datasets: ReST is particularly powerful when only small
datasets of molecules with desired properties are available. The Grow Step allows the
model to generate new samples based on the small dataset, effectively augmenting
the training data. By iteratively refining the model using high-scoring samples, ReST
ensures that the model learns effectively even from a limited amount of data. This
process helps in extracting the maximum value from small datasets, aligning the model
closely with the desired properties.

4.5.3 Fine-Tuning

The fine-tuning of our models was conducted using the Reinforced Self-Training (ReST)
framework, which integrates reinforcement learning to align model outputs with desired
properties. The models underwent 15 epochs of training, with 10 grow steps and 5
improve steps, employing the Adam optimizer with a learning rate set at 5e-4. This rate
was selected to ensure an optimal balance between convergence speed and accuracy.

The fine-tuning process was performed using an NVIDIA GeForce GTX 1080 Ti
graphics card, providing the necessary computational power for efficient training.

For the fine-tuning, a Llama-small model pre-trained on the PubChem dataset was
chosen. The string ‘CCO’ was used as a start token to initiate the generation process.
This approach ensured that the generation of molecular structures began from the same
starting points each time, helping us better observe the role of the ReST method.

The fine-tuning process focused on improving the average Quantitative Estimate
of Drug-likeness (QED) score of the generated samples. The results indicated over
10% improvement, from 0.41 in the base model to 0.453 in the fine-tuned model,
demonstrating the effectiveness of the ReST framework in generating molecules with
desirable properties.
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51 Unconditioned Training

In this section, we look at the results of training a model without any molecular
conditions. The model is trained to generate valid molecules autoregressively by
understanding the grammar of the chemical space.

5.1.1 Training Curves

learning_rate step_train_loss epach_valid_loss

— unconditional_moses S — unconditional_moses S — unconditional

100k 150k 200k 250k 300k 50k 100k 150k 200k 250k 300k 50K 100k 150k 200k 250k 300k

50k 100 1501 200k 250k 300k 50k 100k 150k 200k 250k 300K 50k 100k 150k 200k 250K 300k

Figure 5.1: Plots for Unconditioned Training of the Model

From the plots shown in Figure 5.1, we see that the validation loss and training loss
have reduced over the epochs. This indicates that the model is not overfitting as it is
able to perform reasonably well even on unseen data points.
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5.1.2 Generation Results

cl ©

Figure 5.2: Uncondtioned Generation Samples

5.1.3 Performance on Evaluation Metrics

Metric Value || Metric Value
Valid 0994 || FCD/TestSF | 1.185
Unique@1000 | 1.000 || SNN/TestSF | 0.582
Unique@10000 | 0.998 || Frag/TestSF | 0.993
FCD/Test 0.559 Scaf/TestSF | 0.059
SNN/ Test 0.633 || IntDiv 0.849
Frag/Test 0.997 || IntDiv2 0.843
Scaf/Test 0.898 || Filters 0.998
logP 0.017 || QED 0.003
SA 0.010 || Weight 1.423
Novelty 0.749

Table 5.1: Performance of Unconditioned Generation on Evaluation Metrics
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5.2. CONDITIONED TRAINING - SCAFFOLD

5.2 Conditioned Training - Scaffold

We now train the model by feeding every molecule along with its scaffold information.
This enables us to prompt the resultant model with the desired scaffold to generate

molecules containing them.

5.21 Training Curves

Charts 6

Figure 5.3: Plots for Scaffold Conditioned Training of the Model

Figure 5.3, illustrates a decrease in both training and validation loss across the
epochs. This trend suggests that the model is learning effectively without overfitting, as

evidenced by its consistent performance on new, unseen data.
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5.2.2 Generation Results
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Figure 5.4: Scaffold Conditioned Generation Samples

5.2.3 Performance on Evaluation Metrics

Metric Value || Metric Value
Valid 0.985 FCD/TestSF | 20.161
Unique@1000 | 0.894 SNN/TestSF | 0.740
Unique@10000 | 0.702 || Frag/TestSF | 0.855
FCD/Test 18.911 || Scaf/TestSF | 0.244
SNN/ Test 0.576 IntDiv 0.779
Frag/Test 0.857 IntDiv2 0.763
Scaf/Test 0.000 Filters 0.999
logP 0.194 QED 0.036
SA 0.194 Weight 6.689
Novelty 0.999

Table 5.2: Performance of Scaffold Conditioned Generation on Evaluation Metrics
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5.3 Conditioned Training - Properties

We then explore the model’s ability to understand and control some chemical properties
of the molecules generated. We train the molecule with the synthetic accessibility score
(Measurement of the difficulty of synthesizing a compound) and the logarithm of the
partition coefficient (the partition coefficient compares the solubilities of the solute in
two immiscible solvents at equilibrium). The trained model should be able to generate
molecules the showcase desired SAS and logP values.

5.3.1 Training Curves

epoch_train_loss epoch_valid_loss
— logp_sas_full_moses o — logp_sas_full_moses o — logp_sas_full_moses

train_step step_train_loss
ogp_sas_full_moses

— logp_sas_full_moses 5 — logp_sas_full_moses

Figure 5.5: Plots for Property Conditioned Training of the Model

The graphs in Figure 5.5 demonstrate a consistent reduction in both training and
validation loss over successive epochs. This pattern indicates effective learning by the
model and a lack of overfitting, as it maintains good performance on data it has not

previously encountered.
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5.3.2 Generation Results
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Figure 5.6: Property Conditioned Generation Samples

5.3.3 Performance on Evaluation Metrics

Metric Value || Metric Value
Valid 0.849 || FCD/TestSF | 8.185
Unique@1000 | 0.113 || SNN/TestSF | 0.568
Unique@10000 | 0.660 || Frag/TestSF | 0.920
FCD/Test 7.355 Scaf/TestSF | 0.008
SNN/ Test 0.613 || IntDiv 0.812
Frag/Test 0919 || IntDiv2 0.785
Scaf/Test 0.594 Filters 0.989
logP 0.632 || QED 0.031
SA 0.448 || Weight 17.584
Novelty 0.886

Table 5.3: Performance of Property Conditioned Generation on Evaluation Metrics
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5.4 Conditioned Training - Scaffold, Properties

As a next step, we try to train a model that can control both scaffold and property
criteria in the generated molecules. The performance of the generated molecules is

again evaluated on several metrics described earlier.

5.4.1 Training Curves

train_step learning_rate step_train_loss

— logp_sas_scaffold_full_moses? 5 — logp_sas_scaffold_full_moses2 5 — logp_sas_scaffold_full

Figure 5.7: Plots for Scaffold + Property Conditioned Training of the Model
In Figure 5.7, the downward trend observed in both the training and validation
losses as epochs progress suggests that the model is effectively learning and generalizing

well. This is indicated by its stable performance on unfamiliar data, showing no signs of

overfitting.
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Figure 5.8: Scaffold + Property Condtitioned Generation Samples

5.4.3 Performance on Evaluation Metrics

Metric Value || Metric Value
Valid 0.220 FCD/TestSF | 21.831
Unique@1000 | 0.591 SNN/TestSF | 0.557
Unique@10000 | 0.530 Frag/TestSF | 0.802
FCD/Test 21.247 || Scaf/TestSF | 0.216
SNN/ Test 0.469 IntDiv 0.827
Frag/Test 0.803 IntDiv2 0.806
Scaf/Test 0.001 Filters 0.989
logP 1.039 QED 0.038
SA 0.552 Weight 13.349
Novelty 1.000

Table 5.4: Performance of Scaffold + Property Conditioned Generation on Evaluation Metrics

The Table 5.4 indicates a relatively poor performance of the model in the evaluation
metrics computed (especially the fraction of valid molecules generated), in spite of
relatively consistent downward trend in the validation loss. This indicates that the
model’s performance may improve if trained for more epochs or with more data.
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5.5 Unconditioned training using GuacaMol Dataset

In the following experiment, we aim to compare these results with those obtained by
training on the GuacaMol dataset. As previously discussed, the GuacaMol dataset
is a subset of the ChEMBL24 dataset and provides a more realistic representation of
drug-like molecules compared to MOSES. This comparison will help us evaluate the

impact of the dataset on the model’s performance across several important metrics.

5.5.1 Training Curves

epoch_valid_loss train_step epoch
03 20
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Figure 5.9: Plots for Model Trained using GuacaMol Dataset

The training plots in 5.9 exhibit a similar trend to those in 5.1. The consistent
reduction in validation loss indicates that the model is able to learn the chemical
grammar of the dataset and generalize well. 5.10 presents a few sample molecules
generated using the model.
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Figure 5.10: Samples of Generation by Model Trained on GuacaMol Dataset

5.5.3 Performance on Evaluation Metrics

Metric Value || Metric Value
Valid 1.0 FCD/TestSF | 23.383
Unique@1000 | 1.0 SNN/TestSF | 0.267
Unique@10000 | 0.9995 || Frag/TestSF | 0.640
FCD/Test 11.113 || Scaf/TestSF | 0.314
SNN/ Test 0.316 IntDiv 0.870
Frag/Test 0.965 IntDiv2 0.865
Scaf/Test 0.314 Filters 0.798
logP 0.939 QED 0.239
SA 0.693 Weight 109.169
Novelty 1.0

Table 5.5: Performance Metrics for Model Trained on GuacaMol Dataset

From 5.5, we can observe that the model’s performance on downstream metrics is
highly dependent on the dataset used for pre-training. Overall, the metrics demonstrate
values within the desired range, as expected given the higher quality of molecules in

the training dataset.
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5.5.4 Comparison - Effect of Dataset on Model Performance

Metric Moses Value | Guacamol Value
Valid 0.994 1.0
Unique@1000 | 1.000 1.0
Unique@10000 | 0.998 0.9995
IntDiv 0.849 0.870
IntDiv2 0.843 0.865
logP 0.017 0.939
QED 0.003 0.239
SA 0.010 0.693
Weight 1.423 109.169
Novelty 0.749 1.0

Table 5.6: Comparison of Models Trained on MOSES and GuacaMol Datasets

As illustrated in 5.6, the model trained on the GuacaMol dataset exhibits significantly
improved performance on drug-likeness metrics such as QED and LogP. This indicates
that the GuacaMol dataset, which is derived from the ChEMBL24 dataset, provides a
more realistic and higher-quality set of drug-like molecules compared to the MOSES
dataset. The superior performance on these key metrics underscores the importance of
using a representative and high-quality dataset for pre-training in order to enhance the
model’s effectiveness in generating drug-like molecules.
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5.6 Downstream Tasks - Alignment to QED

We try to explore if we can improve the drug-like behaviour of the generated molecules.
This is so that the generated molecules can be more useful and fit for human consumption.
Having pre-trained a model capable of generating valid, unique and conditioned
molecules, we now try to align the generated molecules to certain properties of interest
in the downstream tasks, such as the QED score.
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Figure 5.11: QED fine-tuning training plots
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5.6. DOWNSTREAM TASKS - ALIGNMENT TO QED

The plots in Figure 5.11 show the variation of specific model parameters during the
training steps. Notably, the QED score, the property being optimized, increased by over
10% throughout the training. Additionally, Figures 5.12 and 5.13 demonstrate changes
in other significant metrics as the model aligns to generate molecules with higher QED
values. Analyzing these variations reveals the evolution of model parameters and the
impact of these adjustments on the desired output. This analysis provides insights into
the effectiveness of the training process and the alignment strategy in optimizing for
higher drug-likeness scores, particularly the QED metric.
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Figure 5.12: QED Generation Plots Over Time (a)
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Figure 5.13: QED Generation Plots Over Time (b)

Studying the plots in Figure 5.12 and 5.13, we see that as we maximize the QED
value of the generated molecules, we observe concurrent improvements in related
metrics such as LogP. Additionally, the synthetic accessibility metrics, computed using
different methods (SA, SCScore, and SYBA), exhibit similar trends. This consistency
in the observed patterns underscores the robustness of the alignment strategy and its

effectiveness in enhancing multiple aspects of drug-likeness simultaneously.
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6

ConcLusioN AND Future WoRK

We embarked on this project with the goal of leveraging recent advancements in
deep learning and natural language processing (NLP) to generate novel molecules
that can aid in the drug discovery process. Our initial objective was to explore how
state-of-the-art techniques in these fields could be applied to create molecules with
specific desired properties, potentially accelerating the development of new therapeutics.

Throughout the course of our research, we delved into the various levers available
to control the molecular generation process. This journey took us from understanding
the importance of datasets and data representations to experimenting with different
tokenizers and models. We also focused on evaluation metrics to assess the quality and
relevance of the generated molecules. Additionally, we explored fine-tuning and align-
ment techniques to ensure that the models could be optimized to generate molecules
with desired characteristics for downstream tasks.

Our findings demonstrate that we can effectively control numerous characteristics
of the molecules generated by the models. This control extends from the molecular
scaffolds to the physicochemical properties and drug-like behaviors. By carefully
manipulating the various components of the molecular generation pipeline, we were
able to produce molecules that meet specific criteria, showcasing the potential of these
advanced techniques in the field of drug discovery.

Looking ahead, the adoption of innovative alignment frameworks like Reinforced
Self-Training (ReST) holds great promise for molecular generation. Our results indicate
that integrating ReST can significantly enhance the alignment of generated molecules
with desired properties. Future work could explore the generation of molecules with
specific therapeutic properties, such as anti-malarial, anti-bacterial, and anti-fungal
activities. These advancements suggest a bright and exciting future for targeted drug
discovery, where sophisticated alignment techniques can pave the way for more effective
and efficient therapeutic developments.
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DECLARATION OF AI-ASSISTED TECHNOLOGIES

IN THE WRITING PROCESS

During the preparation of this work, the author used ChatGPT to improve the orga-
nizational flow of the paper and eliminate errors by providing the draft. After using
this tool/service, the author reviewed and edited the content as needed and takes full
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