Spaces:
Running
Running
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Query
|
2 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
3 |
+
from qwen_vl_utils import process_vision_info
|
4 |
+
import torch
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct"
|
9 |
+
min_pixels = 256*28*28
|
10 |
+
max_pixels = 1280*28*28
|
11 |
+
processor = AutoProcessor.from_pretrained(
|
12 |
+
checkpoint,
|
13 |
+
min_pixels=min_pixels,
|
14 |
+
max_pixels=max_pixels
|
15 |
+
)
|
16 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
17 |
+
checkpoint,
|
18 |
+
torch_dtype=torch.bfloat16,
|
19 |
+
device_map="auto",
|
20 |
+
# attn_implementation="flash_attention_2",
|
21 |
+
)
|
22 |
+
|
23 |
+
@app.get("/")
|
24 |
+
def read_root():
|
25 |
+
return {"message": "API is live. Use the /predict endpoint."}
|
26 |
+
|
27 |
+
@app.get("/predict")
|
28 |
+
def predict(image_url: str = Query(...), prompt: str = Query(...)):
|
29 |
+
messages = [
|
30 |
+
{"role": "system", "content": "You are a helpful assistant with vision abilities."},
|
31 |
+
{"role": "user", "content": [{"type": "image", "image": image_url}, {"type": "text", "text": prompt}]},
|
32 |
+
]
|
33 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
34 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
35 |
+
inputs = processor(
|
36 |
+
text=[text],
|
37 |
+
images=image_inputs,
|
38 |
+
videos=video_inputs,
|
39 |
+
padding=True,
|
40 |
+
return_tensors="pt",
|
41 |
+
).to(model.device)
|
42 |
+
with torch.no_grad():
|
43 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
44 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
45 |
+
output_texts = processor.batch_decode(
|
46 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
47 |
+
)
|
48 |
+
return {"response": output_texts[0]}
|