biotechtamilan commited on
Commit
2771982
·
verified ·
1 Parent(s): dbee63e

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +48 -0
main.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, Query
2
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
3
+ from qwen_vl_utils import process_vision_info
4
+ import torch
5
+
6
+ app = FastAPI()
7
+
8
+ checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct"
9
+ min_pixels = 256*28*28
10
+ max_pixels = 1280*28*28
11
+ processor = AutoProcessor.from_pretrained(
12
+ checkpoint,
13
+ min_pixels=min_pixels,
14
+ max_pixels=max_pixels
15
+ )
16
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
17
+ checkpoint,
18
+ torch_dtype=torch.bfloat16,
19
+ device_map="auto",
20
+ # attn_implementation="flash_attention_2",
21
+ )
22
+
23
+ @app.get("/")
24
+ def read_root():
25
+ return {"message": "API is live. Use the /predict endpoint."}
26
+
27
+ @app.get("/predict")
28
+ def predict(image_url: str = Query(...), prompt: str = Query(...)):
29
+ messages = [
30
+ {"role": "system", "content": "You are a helpful assistant with vision abilities."},
31
+ {"role": "user", "content": [{"type": "image", "image": image_url}, {"type": "text", "text": prompt}]},
32
+ ]
33
+ text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
34
+ image_inputs, video_inputs = process_vision_info(messages)
35
+ inputs = processor(
36
+ text=[text],
37
+ images=image_inputs,
38
+ videos=video_inputs,
39
+ padding=True,
40
+ return_tensors="pt",
41
+ ).to(model.device)
42
+ with torch.no_grad():
43
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
44
+ generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
45
+ output_texts = processor.batch_decode(
46
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
47
+ )
48
+ return {"response": output_texts[0]}