Spaces:
Build error
Build error
from transformers import AutoTokenizer, AutoModel | |
import torch | |
from PIL import Image | |
from config import get_inference_config | |
from models import build_model | |
from torch.autograd import Variable | |
from torchvision.transforms import transforms | |
import numpy as np | |
import argparse | |
try: | |
from apex import amp | |
except ImportError: | |
amp = None | |
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) | |
class Namespace: | |
def __init__(self, **kwargs): | |
self.__dict__.update(kwargs) | |
def model_config(config_path): | |
args = Namespace(cfg=config_path) | |
config = get_inference_config(args) | |
return config | |
def read_class_names(file_path): | |
file = open(file_path, 'r') | |
lines = file.readlines() | |
class_list = [] | |
for l in lines: | |
line = l.strip().split() | |
# class_list.append(line[0]) | |
class_list.append(line[1][4:]) | |
classes = tuple(class_list) | |
return classes | |
class GenerateEmbedding: | |
def __init__(self, text_file): | |
self.text_file = text_file | |
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
self.model = AutoModel.from_pretrained("bert-base-uncased") | |
def generate(self): | |
text_list = [] | |
with open(self.text_file, 'r') as f_text: | |
for line in f_text: | |
line = line.encode(encoding='UTF-8', errors='strict') | |
line = line.replace(b'\xef\xbf\xbd\xef\xbf\xbd', b' ') | |
line = line.decode('UTF-8', 'strict') | |
text_list.append(line) | |
# data = f_text.read() | |
select_index = np.random.randint(len(text_list)) | |
inputs = self.tokenizer(text_list[select_index], return_tensors="pt", padding="max_length", | |
truncation=True, max_length=32) | |
outputs = self.model(**inputs) | |
embedding_mean = outputs[1].mean(dim=0).reshape(1, -1).detach().numpy() | |
embedding_full = outputs[1].detach().numpy() | |
embedding_words = outputs[0] # outputs[0].detach().numpy() | |
return None, None, embedding_words | |
class Inference: | |
def __init__(self, config_path, model_path): | |
self.config_path = config_path | |
self.model_path = model_path | |
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# self.classes = ("cat", "dog") | |
self.classes = read_class_names(r"D:\dataset\CUB_200_2011\CUB_200_2011\classes_custom.txt") | |
self.config = model_config(self.config_path) | |
self.model = build_model(self.config) | |
self.checkpoint = torch.load(self.model_path, map_location='cpu') | |
self.model.load_state_dict(self.checkpoint['model'], strict=False) | |
self.model.eval() | |
self.model.cuda() | |
self.transform_img = transforms.Compose([ | |
transforms.Resize((224, 224), interpolation=Image.BILINEAR), | |
transforms.ToTensor(), # transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) | |
transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) | |
]) | |
def infer(self, img_path, meta_data_path): | |
_, _, meta = GenerateEmbedding(meta_data_path).generate() | |
meta = meta.cuda() | |
img = Image.open(img_path).convert('RGB') | |
img = self.transform_img(img) | |
img.unsqueeze_(0) | |
img = img.cuda() | |
img = Variable(img).to(self.device) | |
out = self.model(img, meta) | |
_, pred = torch.max(out.data, 1) | |
predict = self.classes[pred.data.item()] | |
# print(Fore.MAGENTA + f"The Prediction is: {predict}") | |
return predict | |
def parse_option(): | |
parser = argparse.ArgumentParser('MetaFG Inference script', add_help=False) | |
parser.add_argument('--cfg', type=str, default='D:/pycharmprojects/MetaFormer/configs/MetaFG_meta_bert_1_224.yaml', metavar="FILE", help='path to config file', ) | |
# easy config modification | |
parser.add_argument('--model-path', default='D:\pycharmprojects\MetaFormer\output\MetaFG_meta_1\cub_200\ckpt_epoch_92.pth', type=str, help="path to model data") | |
parser.add_argument('--img-path', default=r"D:\dataset\CUB_200_2011\CUB_200_2011\images\012.Yellow_headed_Blackbird\Yellow_Headed_Blackbird_0003_8337.jpg", type=str, help='path to image') | |
parser.add_argument('--meta-path', default=r"D:\dataset\CUB_200_2011\text_c10\012.Yellow_headed_Blackbird\Yellow_Headed_Blackbird_0003_8337.txt", type=str, help='path to meta data') | |
args = parser.parse_args() | |
return args | |
if __name__ == '__main__': | |
args = parse_option() | |
result = Inference(config_path=args.cfg, | |
model_path=args.model_path).infer(img_path=args.img_path, meta_data_path=args.meta_path) | |
print("Predicted: ", result) | |
# Usage: python inference.py --cfg 'path/to/cfg' --model_path 'path/to/model' --img-path 'path/to/img' --meta-path 'path/to/meta' |