Spaces:
Build error
Build error
File size: 2,239 Bytes
8f243be d304119 eba494a 8f243be 43de206 8f243be 43de206 8f243be 0b10362 8f243be d304119 eba494a 9a0738a eba494a d304119 eba494a 9a0738a eba494a d304119 eba494a 9a0738a eba494a d304119 8f243be d304119 8f243be d304119 8f243be d304119 8f243be 4404cfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
from inference import Inference
import argparse
import gradio as gr
import glob
from huggingface_hub import hf_hub_download
import os
def parse_option():
parser = argparse.ArgumentParser('MetaFG Inference script', add_help=False)
parser.add_argument('--cfg', type=str, metavar="FILE", help='path to config file')
# easy config modification
parser.add_argument('--model-path', type=str, help="path to model data")
parser.add_argument('--img-size', type=int, default=384, help='path to image')
parser.add_argument('--meta-path', default="meta.txt", type=str, help='path to meta data')
parser.add_argument('--names-path', type=str, help='path to meta data')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_option()
if not args.model_path:
model_path = hf_hub_download(repo_id="joshvm/inaturalist_sgd_4k",
filename="inat_sgd_6k.pth",
token=os.environ["HUGGINGFACE_TOKEN"])
else:
model_path = args.model_path
if not args.cfg:
model_config = hf_hub_download(repo_id="joshvm/inaturalist_sgd_4k",
filename="MetaFG_2_384_inat.yaml",
token=os.environ["HUGGINGFACE_TOKEN"])
else:
model_config = args.cfg
if not args.names_path:
names_path = hf_hub_download(repo_id="joshvm/inaturalist_sgd_4k",
filename="inat_sgd_names.txt",
token=os.environ["HUGGINGFACE_TOKEN"])
else:
names_path = args.names_path
model = Inference(config_path=model_config,
model_path=model_path,
names_path=names_path)
def classify(image):
preds = model.infer(img_path=image, meta_data_path="meta.txt")
#confidences = {c: float(preds[i]) for i,c in enumerate(model.classes)}
return preds
gr.Interface(fn=classify,
inputs=gr.Image(shape=(args.img_size, args.img_size), type="pil"),
outputs=gr.Label(num_top_classes=10),
examples=glob.glob("./example_images/*.jpg")).launch()
|