File size: 12,636 Bytes
4a3ad95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import math
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.helpers import load_pretrained
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_
import numpy as np
from .MBConv import MBConvBlock
from .MHSA import MHSABlock,Mlp
from .meta_encoder import ResNormLayer
def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic',
        'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225),
        'classifier': 'head',
        **kwargs
    }

default_cfgs = {
    'MetaFG_0': _cfg(),
    'MetaFG_1': _cfg(),
    'MetaFG_2': _cfg(),
}

def make_blocks(stage_index,depths,embed_dims,img_size,dpr,extra_token_num=1,num_heads=8,mlp_ratio=4.,stage_type='conv'):
    stage_name = f'stage_{stage_index}'
    blocks = []
    for block_idx in range(depths[stage_index]):
        stride = 2 if block_idx == 0 and stage_index != 1 else 1
        in_chans = embed_dims[stage_index] if block_idx != 0 else  embed_dims[stage_index-1]
        out_chans = embed_dims[stage_index]
        image_size = img_size if block_idx == 0 or stage_index == 1 else img_size//2
        drop_path_rate = dpr[sum(depths[1:stage_index])+block_idx]
        if stage_type == 'conv':
            blocks.append(MBConvBlock(ksize=3,input_filters=in_chans,output_filters=out_chans,
                                      image_size=image_size,expand_ratio=int(mlp_ratio),stride=stride,drop_connect_rate=drop_path_rate))
        elif stage_type == 'mhsa':
            blocks.append(MHSABlock(input_dim=in_chans,output_dim=out_chans,
                                    image_size=image_size,stride=stride,num_heads=num_heads,extra_token_num=extra_token_num,
                                    mlp_ratio=mlp_ratio,drop_path=drop_path_rate))
        else:
            raise NotImplementedError("We only support conv and mhsa")
    return blocks
    

class MetaFG_Meta(nn.Module):
    def __init__(self,img_size=224,in_chans=3, num_classes=1000,
                conv_embed_dims = [64,96,192],attn_embed_dims=[384,768],
                conv_depths = [2,2,3],attn_depths = [5,2],num_heads=32,extra_token_num=3,mlp_ratio=4.,
                conv_norm_layer=nn.BatchNorm2d,attn_norm_layer=nn.LayerNorm,
                conv_act_layer=nn.ReLU,attn_act_layer=nn.GELU,
                qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,drop_path_rate=0.,
                add_meta=True,meta_dims=[4,3],mask_prob=1.0,mask_type='linear',
                only_last_cls=False,
                use_checkpoint=False):
        super().__init__()
        self.only_last_cls = only_last_cls
        self.img_size = img_size
        self.num_classes = num_classes
        self.add_meta = add_meta
        self.meta_dims = meta_dims
        self.cur_epoch = -1
        self.total_epoch = -1
        self.mask_prob = mask_prob
        self.mask_type = mask_type
        self.attn_embed_dims = attn_embed_dims
        self.extra_token_num = extra_token_num
        if self.add_meta:
#             assert len(meta_dims)==extra_token_num-1
            for ind,meta_dim in enumerate(meta_dims):
                meta_head_1 = nn.Sequential(
                                        nn.Linear(meta_dim, attn_embed_dims[0]),
                                        nn.ReLU(inplace=True),
                                        nn.LayerNorm(attn_embed_dims[0]),
                                        ResNormLayer(attn_embed_dims[0]),
                                        ) if meta_dim > 0 else nn.Identity()
                meta_head_2 = nn.Sequential(
                                        nn.Linear(meta_dim, attn_embed_dims[1]),
                                        nn.ReLU(inplace=True),
                                        nn.LayerNorm(attn_embed_dims[1]),
                                        ResNormLayer(attn_embed_dims[1]),
                                        ) if meta_dim > 0 else nn.Identity()  
                setattr(self, f"meta_{ind+1}_head_1", meta_head_1)
                setattr(self, f"meta_{ind+1}_head_2", meta_head_2)
        
        
        stem_chs = (3 * (conv_embed_dims[0] // 4), conv_embed_dims[0])
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(conv_depths[1:]+attn_depths))]
        #stage_0
        self.stage_0 = nn.Sequential(*[
                nn.Conv2d(in_chans, stem_chs[0], 3, stride=2, padding=1, bias=False),
                conv_norm_layer(stem_chs[0]),
                conv_act_layer(inplace=True),
                nn.Conv2d(stem_chs[0], stem_chs[1], 3, stride=1, padding=1, bias=False),
                conv_norm_layer(stem_chs[1]),
                conv_act_layer(inplace=True),
                nn.Conv2d(stem_chs[1], conv_embed_dims[0], 3, stride=1, padding=1, bias=False)])
        self.bn1 = conv_norm_layer(conv_embed_dims[0])
        self.act1 = conv_act_layer(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        #stage_1
        self.stage_1 = nn.ModuleList(make_blocks(1,conv_depths+attn_depths,conv_embed_dims+attn_embed_dims,img_size//4,
                                      dpr=dpr,num_heads=num_heads,extra_token_num=extra_token_num,mlp_ratio=mlp_ratio,stage_type='conv'))
        #stage_2
        self.stage_2 = nn.ModuleList(make_blocks(2,conv_depths+attn_depths,conv_embed_dims+attn_embed_dims,img_size//4,
                                      dpr=dpr,num_heads=num_heads,extra_token_num=extra_token_num,mlp_ratio=mlp_ratio,stage_type='conv'))
        
        #stage_3
        self.cls_token_1 = nn.Parameter(torch.zeros(1, 1, attn_embed_dims[0]))
        self.stage_3 = nn.ModuleList(make_blocks(3,conv_depths+attn_depths,conv_embed_dims+attn_embed_dims,img_size//8,
                                      dpr=dpr,num_heads=num_heads,extra_token_num=extra_token_num,mlp_ratio=mlp_ratio,stage_type='mhsa'))
        #stage_4
        self.cls_token_2 = nn.Parameter(torch.zeros(1, 1, attn_embed_dims[1]))
        self.stage_4 = nn.ModuleList(make_blocks(4,conv_depths+attn_depths,conv_embed_dims+attn_embed_dims,img_size//16,
                                      dpr=dpr,num_heads=num_heads,extra_token_num=extra_token_num,mlp_ratio=mlp_ratio,stage_type='mhsa'))
        self.norm_2 = attn_norm_layer(attn_embed_dims[1])
        
        #Aggregate
        if not self.only_last_cls:
            self.cl_1_fc = nn.Sequential(*[Mlp(in_features=attn_embed_dims[0], out_features=attn_embed_dims[1]),
                                         attn_norm_layer(attn_embed_dims[1])])
            self.aggregate = torch.nn.Conv1d(in_channels=2, out_channels=1, kernel_size=1)
            self.norm = attn_norm_layer(attn_embed_dims[1])
            self.norm_1 = attn_norm_layer(attn_embed_dims[0])
        # Classifier head
        self.head = nn.Linear(attn_embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
        
        trunc_normal_(self.cls_token_1, std=.02)
        trunc_normal_(self.cls_token_2, std=.02)
        self.apply(self._init_weights)
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
#             fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
#             fan_out //= m.groups
#             m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
#             if m.bias is not None:
#                 m.bias.data.zero_()
        elif isinstance(m, nn.BatchNorm2d):
            nn.init.ones_(m.weight)
            nn.init.zeros_(m.bias)
    
    @torch.jit.ignore
    def no_weight_decay(self):
        return {'cls_token_1','cls_token_2'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self,x,meta=None):
        B = x.shape[0]
        extra_tokens_1 = [self.cls_token_1]
        extra_tokens_2 = [self.cls_token_2]
        if self.add_meta:
            assert meta != None,'meta is None'
            if len(self.meta_dims)>1:
                metas = torch.split(meta,self.meta_dims,dim=1)
            else:
                metas = (meta,)
            for ind,cur_meta in enumerate(metas):
                meta_head_1 = getattr(self,f"meta_{ind+1}_head_1")
                meta_head_2 = getattr(self,f"meta_{ind+1}_head_2")
                meta_1 = meta_head_1(cur_meta)
                meta_1 = meta_1.reshape(B, -1, self.attn_embed_dims[0])
                meta_2 = meta_head_2(cur_meta)
                meta_2 = meta_2.reshape(B, -1, self.attn_embed_dims[1])
                extra_tokens_1.append(meta_1)
                extra_tokens_2.append(meta_2)
            
        x = self.stage_0(x)
        x = self.bn1(x)
        x = self.act1(x)
        x = self.maxpool(x)
        for blk in self.stage_1:
            x = blk(x)
        for blk in self.stage_2:
            x = blk(x)
        H0,W0 = self.img_size//8,self.img_size//8
        for ind,blk in enumerate(self.stage_3):
            if ind==0:
                x = blk(x,H0,W0,extra_tokens_1)
            else:
                x = blk(x,H0,W0)
        if not self.only_last_cls:
            cls_1 = x[:, :1, :]
            cls_1 = self.norm_1(cls_1)
            cls_1 = self.cl_1_fc(cls_1)
        
        x = x[:, self.extra_token_num:, :]
        H1,W1 = self.img_size//16,self.img_size//16
        x = x.reshape(B,H1,W1,-1).permute(0, 3, 1, 2).contiguous()
        for ind,blk in enumerate(self.stage_4):
            if ind==0:
                x = blk(x,H1,W1,extra_tokens_2)
            else:
                x = blk(x,H1,W1)
        cls_2 = x[:, :1, :]
        cls_2 = self.norm_2(cls_2)
        if not self.only_last_cls:
            cls = torch.cat((cls_1,cls_2), dim=1)#B,2,C
            cls = self.aggregate(cls).squeeze(dim=1)#B,C
            cls = self.norm(cls)
        else:
            cls = cls_2.squeeze(dim=1)
        return cls
    def forward(self, x,meta=None):
        if meta is not None:
            if self.mask_type=='linear':
                cur_mask_prob = self.mask_prob - self.cur_epoch/self.total_epoch
            else:
                cur_mask_prob = self.mask_prob
            if cur_mask_prob != 0 and self.training:
                mask = torch.ones_like(meta)
                mask_index = torch.randperm(meta.size(0))[:int(meta.size(0)*cur_mask_prob)]
                mask[mask_index] = 0
                meta = mask * meta
        x = self.forward_features(x,meta)
        x = self.head(x)
        return x 

@register_model
def MetaFG_meta_0(pretrained=False, **kwargs):
    model = MetaFG_Meta(conv_embed_dims = [64,96,192],attn_embed_dims=[384,768],
                 conv_depths = [2,2,3],attn_depths = [5,2],num_heads=8,mlp_ratio=4., **kwargs)
    model.default_cfg = default_cfgs['MetaFG_0']
    if pretrained:
        load_pretrained(
            model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
    return model
@register_model
def MetaFG_meta_1(pretrained=False, **kwargs):
    model = MetaFG_Meta(conv_embed_dims = [64,96,192],attn_embed_dims=[384,768],
                 conv_depths = [2,2,6],attn_depths = [14,2],num_heads=8,mlp_ratio=4., **kwargs)
    model.default_cfg = default_cfgs['MetaFG_1']
    if pretrained:
        load_pretrained(
            model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
    return model
@register_model
def MetaFG_meta_2(pretrained=False, **kwargs):
    model = MetaFG_Meta(conv_embed_dims = [128,128,256],attn_embed_dims=[512,1024],
                 conv_depths = [2,2,6],attn_depths = [14,2],num_heads=8,mlp_ratio=4., **kwargs)
    model.default_cfg = default_cfgs['MetaFG_2']
    if pretrained:
        load_pretrained(
            model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
    return model
if __name__ == "__main__":
    x = torch.randn([2, 3, 224, 224])
    meta = torch.randn([2,7])
    model = MetaFG_meta()
    import ipdb;ipdb.set_trace()
    output = model(x,meta)
    print(output.shape)