Spaces:
Build error
Build error
File size: 9,816 Bytes
4a3ad95 8f243be 4a3ad95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import math
import torch
import torch.nn as nn
from timm.models.helpers import load_pretrained
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_
import numpy as np
from .MBConv import MBConvBlock
from .MHSA import MHSABlock,Mlp
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225),
'classifier': 'head',
**kwargs
}
default_cfgs = {
'MetaFG_0': _cfg(),
'MetaFG_1': _cfg(),
'MetaFG_2': _cfg(),
}
def make_blocks(stage_index,depths,embed_dims,img_size,dpr,extra_token_num=1,num_heads=8,mlp_ratio=4.,stage_type='conv'):
stage_name = f'stage_{stage_index}'
blocks = []
for block_idx in range(depths[stage_index]):
stride = 2 if block_idx == 0 and stage_index != 1 else 1
in_chans = embed_dims[stage_index] if block_idx != 0 else embed_dims[stage_index-1]
out_chans = embed_dims[stage_index]
image_size = img_size if block_idx == 0 or stage_index == 1 else img_size//2
drop_path_rate = dpr[sum(depths[1:stage_index])+block_idx]
if stage_type == 'conv':
blocks.append(MBConvBlock(ksize=3,input_filters=in_chans,output_filters=out_chans,
image_size=image_size,expand_ratio=int(mlp_ratio),stride=stride,drop_connect_rate=drop_path_rate))
elif stage_type == 'mhsa':
blocks.append(MHSABlock(input_dim=in_chans,output_dim=out_chans,
image_size=image_size,stride=stride,num_heads=num_heads,extra_token_num=extra_token_num,
mlp_ratio=mlp_ratio,drop_path=drop_path_rate))
else:
raise NotImplementedError("We only support conv and mhsa")
return blocks
class MetaFG(nn.Module):
def __init__(self,img_size=224,in_chans=3, num_classes=1000,
conv_embed_dims = [64,96,192],attn_embed_dims=[384,768],
conv_depths = [2,2,3],attn_depths = [5,2],num_heads=32,extra_token_num=1,mlp_ratio=4.,
conv_norm_layer=nn.BatchNorm2d,attn_norm_layer=nn.LayerNorm,
conv_act_layer=nn.ReLU,attn_act_layer=nn.GELU,
qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,drop_path_rate=0.,
meta_dims=[],
only_last_cls=False,
use_checkpoint=False,
**kwargs):
super().__init__()
self.only_last_cls = only_last_cls
self.img_size = img_size
self.num_classes = num_classes
stem_chs = (3 * (conv_embed_dims[0] // 4), conv_embed_dims[0])
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(conv_depths[1:]+attn_depths))]
#stage_0
self.stage_0 = nn.Sequential(*[
nn.Conv2d(in_chans, stem_chs[0], 3, stride=2, padding=1, bias=False),
conv_norm_layer(stem_chs[0]),
conv_act_layer(inplace=True),
nn.Conv2d(stem_chs[0], stem_chs[1], 3, stride=1, padding=1, bias=False),
conv_norm_layer(stem_chs[1]),
conv_act_layer(inplace=True),
nn.Conv2d(stem_chs[1], conv_embed_dims[0], 3, stride=1, padding=1, bias=False)])
self.bn1 = conv_norm_layer(conv_embed_dims[0])
self.act1 = conv_act_layer(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
#stage_1
self.stage_1 = nn.ModuleList(make_blocks(1,conv_depths+attn_depths,conv_embed_dims+attn_embed_dims,img_size//4,
dpr=dpr,num_heads=num_heads,extra_token_num=extra_token_num,mlp_ratio=mlp_ratio,stage_type='conv'))
#stage_2
self.stage_2 = nn.ModuleList(make_blocks(2,conv_depths+attn_depths,conv_embed_dims+attn_embed_dims,img_size//4,
dpr=dpr,num_heads=num_heads,extra_token_num=extra_token_num,mlp_ratio=mlp_ratio,stage_type='conv'))
#stage_3
self.cls_token_1 = nn.Parameter(torch.zeros(1, 1, attn_embed_dims[0]))
self.stage_3 = nn.ModuleList(make_blocks(3,conv_depths+attn_depths,conv_embed_dims+attn_embed_dims,img_size//8,
dpr=dpr,num_heads=num_heads,extra_token_num=extra_token_num,mlp_ratio=mlp_ratio,stage_type='mhsa'))
#stage_4
self.cls_token_2 = nn.Parameter(torch.zeros(1, 1, attn_embed_dims[1]))
self.stage_4 = nn.ModuleList(make_blocks(4,conv_depths+attn_depths,conv_embed_dims+attn_embed_dims,img_size//16,
dpr=dpr,num_heads=num_heads,extra_token_num=extra_token_num,mlp_ratio=mlp_ratio,stage_type='mhsa'))
self.norm_2 = attn_norm_layer(attn_embed_dims[1])
#Aggregate
if not self.only_last_cls:
self.cl_1_fc = nn.Sequential(*[Mlp(in_features=attn_embed_dims[0], out_features=attn_embed_dims[1]),
attn_norm_layer(attn_embed_dims[1])])
self.aggregate = torch.nn.Conv1d(in_channels=2, out_channels=1, kernel_size=1)
self.norm_1 = attn_norm_layer(attn_embed_dims[0])
self.norm = attn_norm_layer(attn_embed_dims[1])
# Classifier head
self.head = nn.Linear(attn_embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.cls_token_1, std=.02)
trunc_normal_(self.cls_token_2, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
# fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# fan_out //= m.groups
# m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
# if m.bias is not None:
# m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
@torch.jit.ignore
def no_weight_decay(self):
return {'cls_token_1','cls_token_2'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self,x,meta=None):
extra_tokens_1 = [self.cls_token_1]
extra_tokens_2 = [self.cls_token_2]
B = x.shape[0]
x = self.stage_0(x)
x = self.bn1(x)
x = self.act1(x)
x = self.maxpool(x)
for blk in self.stage_1:
x = blk(x)
for blk in self.stage_2:
x = blk(x)
H0,W0 = self.img_size//8,self.img_size//8
for ind,blk in enumerate(self.stage_3):
if ind==0:
x = blk(x,H0,W0,extra_tokens_1)
else:
x = blk(x,H0,W0)
if not self.only_last_cls:
cls_1 = x[:, :1, :]
cls_1 = self.norm_1(cls_1)
cls_1 = self.cl_1_fc(cls_1)
x = x[:, 1:, :]
H1,W1 = self.img_size//16,self.img_size//16
x = x.reshape(B,H1,W1,-1).permute(0, 3, 1, 2).contiguous()
for ind,blk in enumerate(self.stage_4):
if ind==0:
x = blk(x,H1,W1,extra_tokens_2)
else:
x = blk(x,H1,W1)
cls_2 = x[:, :1, :]
cls_2 = self.norm_2(cls_2)
if not self.only_last_cls:
cls = torch.cat((cls_1,cls_2), dim=1)#B,2,C
cls = self.aggregate(cls).squeeze(dim=1)#B,C
cls = self.norm(cls)
else:
cls = cls_2.squeeze(dim=1)
return cls
def forward(self, x,meta=None):
x = self.forward_features(x,meta)
x = self.head(x)
return x
@register_model
def MetaFG_0(pretrained=False, **kwargs):
model = MetaFG(conv_embed_dims = [64,96,192],attn_embed_dims=[384,768],
conv_depths = [2,2,3],attn_depths = [5,2],num_heads=8,mlp_ratio=4., **kwargs)
model.default_cfg = default_cfgs['MetaFG_0']
if pretrained:
load_pretrained(
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
return model
@register_model
def MetaFG_1(pretrained=False, **kwargs):
model = MetaFG(conv_embed_dims = [64,96,192],attn_embed_dims=[384,768],
conv_depths = [2,2,6],attn_depths = [14,2],num_heads=8,mlp_ratio=4., **kwargs)
model.default_cfg = default_cfgs['MetaFG_1']
if pretrained:
load_pretrained(
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
return model
@register_model
def MetaFG_2(pretrained=False, **kwargs):
model = MetaFG(conv_embed_dims = [128,128,256],attn_embed_dims=[512,1024],
conv_depths = [2,2,6],attn_depths = [14,2],num_heads=8,mlp_ratio=4., **kwargs)
model.default_cfg = default_cfgs['MetaFG_2']
if pretrained:
load_pretrained(
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
return model
if __name__ == "__main__":
x = torch.randn([2, 3, 224, 224])
model = MetaFG()
import ipdb;ipdb.set_trace()
output = model(x)
print(output.shape) |