Spaces:
Sleeping
Sleeping
File size: 1,195 Bytes
8152368 1af183a 8152368 1af183a f5d1103 1af183a f5d1103 1af183a 8152368 f5d1103 1af183a a30008c 8152368 1af183a f2340ef bc683d5 a30008c f2340ef bc683d5 8152368 bc683d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import pandas as pd
def plot_graph(file):
df = pd.read_csv(file.name)
# Assuming 'Date' is formatted as 'YYYY-MM-DD' in the CSV.
df['Date'] = pd.to_datetime(df['Date'])
# Set figure and axes
plt.figure(figsize=(10, 6))
# Plot each species as a separate line
for species in df['Species'].unique():
species_data = df[df['Species'] == species]
plt.plot(species_data['Date'], species_data['Count'], label=species, marker='o')
# Setting labels and title
plt.xlabel('Date')
plt.ylabel('Count')
plt.title('Observations of Species Over Time')
plt.legend(title='Species')
plt.grid(True)
plt.xticks(rotation=45)
# Save the plot
plot_filename = 'plot.png'
plt.savefig(plot_filename)
plt.close()
return plot_filename
examples = [
["example1.csv"],
]
interface = gr.Interface(
fn=plot_graph,
inputs=gr.File(label="Upload CSV File"),
outputs=gr.Image(type="filepath", label="Generated Graph"),
title="Species Observation Plotter",
examples=examples
)
interface.launch()
|