# REQUIREMENTS """ !python -m pip -q install torchvision torch !python -m pip -q install rasterio !python -m pip -q install git+https://github.com/PatBall1/detectree2.git # in order for this to work, you must have installed gdal !python -m pip install opencv-python !python -m pip install requests """ from detectree2.preprocessing.tiling import tile_data from detectree2.models.outputs import project_to_geojson, stitch_crowns, clean_crowns from detectree2.models.predict import predict_on_data from detectree2.models.train import setup_cfg from detectron2.engine import DefaultPredictor import rasterio import os import requests #Somehow this tiles_path where the tilings are stored, only works if the absolute path is provided #Do not use relative path #Make sure that tiles_path ends with '/' otherwise the predict_on_data() will not work later def create_tiles(input_path, tile_width, tile_height, tile_buffer): img_path = input_path current_directory = os.getcwd() tiles_directory = os.path.join(current_directory, "tiles/") if not os.path.exists(tiles_directory): os.makedirs(tiles_directory) data = rasterio.open(img_path) buffer = tile_buffer tile_width = tile_width tile_height = tile_height tile_data(data, tiles_directory, buffer, tile_width, tile_height, dtype_bool = True) return tiles_directory def download_file(url, local_filename): with requests.get(url, stream=True) as r: r.raise_for_status() with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) return local_filename def predict(tile_path, overlap_threshold, confidence_threshold, simplify_value, store_path): url = "https://zenodo.org/records/10522461/files/230103_randresize_full.pth" trained_model = "./230103_randresize_full.pth" download_file(url=url, local_filename=trained_model) cfg = setup_cfg(update_model=trained_model, out_dir=store_path) # hash the following line if you have gpu support # cfg.MODEL.DEVICE = "cpu" predict_on_data(tile_path, predictor=DefaultPredictor(cfg)) project_to_geojson(tile_path, tile_path + "predictions/", tile_path + "predictions_geo/") crowns = stitch_crowns(tile_path + "predictions_geo/", 1) clean = clean_crowns(crowns, overlap_threshold, confidence=confidence_threshold) clean = clean.set_geometry(clean.simplify(simplify_value)) clean.to_file(store_path + "/detectree2_delin.geojson") def run_detectree2(tif_input_path, store_path, tile_width=20, tile_height=20, tile_buffer=20, overlap_threshold=0.35, confidence_threshold=0.2, simplify_value=0.2): tile_path = create_tiles(input_path=tif_input_path, tile_width=tile_width, tile_height=tile_height, tile_buffer=tile_buffer) print(tile_path) predict(tile_path=tile_path, overlap_threshold=overlap_threshold, confidence_threshold=confidence_threshold, simplify_value=simplify_value, store_path=store_path)