ready for merging
Browse files
detectree2/predictions/predict.ipynb
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87d72c31226fa90773202d299b6e413ed5330cc5a25a15c44e413c5f15d23178
|
3 |
+
size 4749
|
detectree2/predictions/predict.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# REQUIREMENTS
|
3 |
+
"""
|
4 |
+
!python -m pip -q install torchvision torch
|
5 |
+
!python -m pip -q install rasterio
|
6 |
+
!python -m pip -q install git+https://github.com/PatBall1/detectree2.git # in order for this to work, you must have installed gdal
|
7 |
+
!python -m pip install opencv-python
|
8 |
+
!python -m pip install requests
|
9 |
+
"""
|
10 |
+
from detectree2.preprocessing.tiling import tile_data
|
11 |
+
from detectree2.models.outputs import project_to_geojson, stitch_crowns, clean_crowns
|
12 |
+
from detectree2.models.predict import predict_on_data
|
13 |
+
from detectree2.models.train import setup_cfg
|
14 |
+
from detectron2.engine import DefaultPredictor
|
15 |
+
import rasterio
|
16 |
+
import os
|
17 |
+
import requests
|
18 |
+
|
19 |
+
#Somehow this tiles_path where the tilings are stored, only works if the absolute path is provided
|
20 |
+
#Do not use relative path
|
21 |
+
|
22 |
+
#Make sure that tiles_path ends with '/' otherwise the predict_on_data() will not work later
|
23 |
+
|
24 |
+
def create_tiles(input_path, tile_width, tile_height, tile_buffer):
|
25 |
+
img_path = input_path
|
26 |
+
|
27 |
+
current_directory = os.getcwd()
|
28 |
+
tiles_directory = os.path.join(current_directory, "tiles")
|
29 |
+
if not os.path.exists(tiles_directory):
|
30 |
+
os.makedirs(tiles_directory)
|
31 |
+
|
32 |
+
data = rasterio.open(img_path)
|
33 |
+
|
34 |
+
buffer = tile_buffer
|
35 |
+
tile_width = tile_width
|
36 |
+
tile_height = tile_height
|
37 |
+
tile_data(data, tiles_directory, buffer, tile_width, tile_height, dtype_bool = True)
|
38 |
+
|
39 |
+
return tiles_directory
|
40 |
+
|
41 |
+
def download_file(url, local_filename):
|
42 |
+
with requests.get(url, stream=True) as r:
|
43 |
+
r.raise_for_status()
|
44 |
+
with open(local_filename, 'wb') as f:
|
45 |
+
for chunk in r.iter_content(chunk_size=8192):
|
46 |
+
f.write(chunk)
|
47 |
+
return local_filename
|
48 |
+
|
49 |
+
def predict(tile_path, overlap_threshold, confidence_threshold, simplify_value, store_path):
|
50 |
+
url = "https://zenodo.org/records/10522461/files/230103_randresize_full.pth"
|
51 |
+
trained_model = "./230103_randresize_full.pth"
|
52 |
+
|
53 |
+
download_file(url=url, local_filename=trained_model)
|
54 |
+
|
55 |
+
cfg = setup_cfg(update_model=trained_model)
|
56 |
+
#cfg.MODEL.DEVICE = "cpu"
|
57 |
+
predict_on_data(tile_path, predictor=DefaultPredictor(cfg))
|
58 |
+
|
59 |
+
project_to_geojson(tile_path, tile_path + "predictions/", tile_path + "predictions_geo/")
|
60 |
+
crowns = stitch_crowns(tile_path + "predictions_geo/", 1)
|
61 |
+
clean = clean_crowns(crowns, overlap_threshold, confidence=confidence_threshold)
|
62 |
+
clean = clean.set_geometry(clean.simplify(simplify_value))
|
63 |
+
clean.to_file(store_path + "predicted_delineations.geojson")
|
64 |
+
|
65 |
+
def run_detectree2(tif_input_path, tile_width=20, tile_height=20, tile_buffer=20, overlap_threshold=0.35, confidence_threshold=0.2, simplify_value=0.2, store_path='./train_outputs/'):
|
66 |
+
tile_path = create_tiles(input_path=tif_input_path, tile_width=tile_width, tile_height=tile_height, tile_buffer=tile_buffer)
|
67 |
+
predict(tile_path=tile_path, overlap_threshold=overlap_threshold, confidence_threshold=confidence_threshold, simplify_value=simplify_value, store_path=store_path)
|
68 |
+
|
69 |
+
run_detectree2(tif_input_path='/Users/jonathanseele/ETH/Hackathons/EcoHackathon/input_dataset/GeoData/TreeCrownVectorDataset.tif')
|