Spaces:
Sleeping
Sleeping
Commit
·
a59a206
1
Parent(s):
05f0071
Update app.py
Browse files
app.py
CHANGED
@@ -32,16 +32,52 @@ documents=[]
|
|
32 |
def generate_random_string(length):
|
33 |
letters = string.ascii_lowercase
|
34 |
return ''.join(random.choice(letters) for i in range(length))
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
with st.sidebar:
|
39 |
st.subheader("Upload your Documents Here: ")
|
40 |
-
pdf_files
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
with open(file_path, 'wb') as f:
|
46 |
f.write(pdf_file.read())
|
47 |
st.success(f"File '{pdf_file.name}' saved successfully.")
|
@@ -49,7 +85,7 @@ with st.sidebar:
|
|
49 |
try:
|
50 |
start_1 = timeit.default_timer() # Start timer
|
51 |
st.write(f"QA文档加载开始:{start_1}")
|
52 |
-
documents = SimpleDirectoryReader(directory_path).load_data()
|
53 |
end_1 = timeit.default_timer() # Start timer
|
54 |
st.write(f"QA文档加载结束:{end_1}")
|
55 |
st.write(f"QA文档加载耗时:{end_1 - start_1}")
|
@@ -61,45 +97,45 @@ except Exception as e:
|
|
61 |
|
62 |
start_2 = timeit.default_timer() # Start timer
|
63 |
st.write(f"向量模型加载开始:{start_2}")
|
64 |
-
embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2'))
|
65 |
end_2 = timeit.default_timer() # Start timer
|
66 |
st.write(f"向量模型加载加载结束:{end_2}")
|
67 |
st.write(f"向量模型加载耗时:{end_2 - start_2}")
|
68 |
|
69 |
-
llm_predictor = LLMPredictor(HuggingFaceHub(repo_id="HuggingFaceH4/starchat-beta", model_kwargs={"min_length":100, "max_new_tokens":1024, "do_sample":True, "temperature":0.2,"top_k":50, "top_p":0.95, "eos_token_id":49155}))
|
70 |
|
71 |
-
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, embed_model=embed_model)
|
72 |
|
73 |
start_3 = timeit.default_timer() # Start timer
|
74 |
st.write(f"向量库构建开始:{start_3}")
|
75 |
-
new_index = VectorStoreIndex.from_documents(
|
76 |
-
documents,
|
77 |
-
service_context=service_context,
|
78 |
)
|
79 |
end_3 = timeit.default_timer() # Start timer
|
80 |
st.write(f"向量库构建结束:{end_3}")
|
81 |
st.write(f"向量库构建耗时:{end_3 - start_3}")
|
82 |
|
83 |
-
new_index.storage_context.persist("directory_path")
|
84 |
|
85 |
-
storage_context = StorageContext.from_defaults(persist_dir="directory_path")
|
86 |
|
87 |
start_4 = timeit.default_timer() # Start timer
|
88 |
st.write(f"向量库装载开始:{start_4}")
|
89 |
-
loadedindex = load_index_from_storage(storage_context=storage_context, service_context=service_context)
|
90 |
end_4 = timeit.default_timer() # Start timer
|
91 |
st.write(f"向量库装载结束:{end_4}")
|
92 |
st.write(f"向量库装载耗时:{end_4 - start_4}")
|
93 |
|
94 |
-
query_engine = loadedindex.as_query_engine()
|
95 |
-
|
96 |
-
user_question
|
97 |
-
if user_question !="" and not user_question.strip().isspace() and not user_question == "" and not user_question.strip() == "" and not user_question.isspace():
|
98 |
-
print("user question: "+user_question)
|
99 |
with st.spinner("AI Thinking...Please wait a while to Cheers!"):
|
100 |
start_5 = timeit.default_timer() # Start timer
|
101 |
st.write(f"Query Engine - AI QA开始:{start_5}")
|
102 |
-
initial_response = query_engine.query(user_question)
|
103 |
temp_ai_response=str(initial_response)
|
104 |
final_ai_response=temp_ai_response.partition('<|end|>')[0]
|
105 |
print("AI Response:\n"+final_ai_response)
|
|
|
32 |
def generate_random_string(length):
|
33 |
letters = string.ascii_lowercase
|
34 |
return ''.join(random.choice(letters) for i in range(length))
|
35 |
+
|
36 |
+
#random_string = generate_random_string(20)
|
37 |
+
#directory_path=random_string
|
38 |
+
|
39 |
+
if "directory_path" not in st.session_state:
|
40 |
+
st.session_state.directory_path = generate_random_string(20)
|
41 |
+
|
42 |
+
if "pdf_files" not in st.session_state:
|
43 |
+
st.session_state.pdf_files = None
|
44 |
+
|
45 |
+
if "documents" not in st.session_state:
|
46 |
+
st.session_state.documents = None
|
47 |
+
|
48 |
+
if "embed_model" not in st.session_state:
|
49 |
+
st.session_state.embed_model = None
|
50 |
+
|
51 |
+
if "llm_predictor" not in st.session_state:
|
52 |
+
st.session_state.llm_predictor = None
|
53 |
+
|
54 |
+
if "service_context" not in st.session_state:
|
55 |
+
st.session_state.service_context = None
|
56 |
+
|
57 |
+
if "new_index" not in st.session_state:
|
58 |
+
st.session_state.new_index = None
|
59 |
+
|
60 |
+
if "storage_context" not in st.session_state:
|
61 |
+
st.session_state.storage_context = None
|
62 |
+
|
63 |
+
if "loadedindex" not in st.session_state:
|
64 |
+
st.session_state.loadedindex = None
|
65 |
+
|
66 |
+
if "query_engine" not in st.session_state:
|
67 |
+
st.session_state.query_engine = None
|
68 |
+
|
69 |
+
if "user_question " not in st.session_state:
|
70 |
+
st.session_state.user_question = ""
|
71 |
|
72 |
with st.sidebar:
|
73 |
st.subheader("Upload your Documents Here: ")
|
74 |
+
#if "pdf_files" not in st.session_state:
|
75 |
+
st.session_state.pdf_files = st.file_uploader("Choose your PDF Files and Press OK", type=['pdf'], accept_multiple_files=True)
|
76 |
+
#pdf_files = st.file_uploader("Choose your PDF Files and Press OK", type=['pdf'], accept_multiple_files=True)
|
77 |
+
if st.session_state.pdf_files:
|
78 |
+
os.makedirs(st.session_state.directory_path)
|
79 |
+
for pdf_file in st.session_state.pdf_files:
|
80 |
+
file_path = os.path.join(st.session_state.directory_path, pdf_file.name)
|
81 |
with open(file_path, 'wb') as f:
|
82 |
f.write(pdf_file.read())
|
83 |
st.success(f"File '{pdf_file.name}' saved successfully.")
|
|
|
85 |
try:
|
86 |
start_1 = timeit.default_timer() # Start timer
|
87 |
st.write(f"QA文档加载开始:{start_1}")
|
88 |
+
st.session_state.documents = SimpleDirectoryReader(st.session_state.directory_path).load_data()
|
89 |
end_1 = timeit.default_timer() # Start timer
|
90 |
st.write(f"QA文档加载结束:{end_1}")
|
91 |
st.write(f"QA文档加载耗时:{end_1 - start_1}")
|
|
|
97 |
|
98 |
start_2 = timeit.default_timer() # Start timer
|
99 |
st.write(f"向量模型加载开始:{start_2}")
|
100 |
+
st.session_state.embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2'))
|
101 |
end_2 = timeit.default_timer() # Start timer
|
102 |
st.write(f"向量模型加载加载结束:{end_2}")
|
103 |
st.write(f"向量模型加载耗时:{end_2 - start_2}")
|
104 |
|
105 |
+
st.session_state.llm_predictor = LLMPredictor(HuggingFaceHub(repo_id="HuggingFaceH4/starchat-beta", model_kwargs={"min_length":100, "max_new_tokens":1024, "do_sample":True, "temperature":0.2,"top_k":50, "top_p":0.95, "eos_token_id":49155}))
|
106 |
|
107 |
+
st.session_state.service_context = ServiceContext.from_defaults(llm_predictor=st.session_state.llm_predictor, embed_model=st.session_state.embed_model)
|
108 |
|
109 |
start_3 = timeit.default_timer() # Start timer
|
110 |
st.write(f"向量库构建开始:{start_3}")
|
111 |
+
st.session_state.new_index = VectorStoreIndex.from_documents(
|
112 |
+
st.session_state.documents,
|
113 |
+
service_context=st.session_state.service_context,
|
114 |
)
|
115 |
end_3 = timeit.default_timer() # Start timer
|
116 |
st.write(f"向量库构建结束:{end_3}")
|
117 |
st.write(f"向量库构建耗时:{end_3 - start_3}")
|
118 |
|
119 |
+
st.session_state.new_index.storage_context.persist("st.session_state.directory_path")
|
120 |
|
121 |
+
st.session_state.storage_context = StorageContext.from_defaults(persist_dir="st.session_state.directory_path")
|
122 |
|
123 |
start_4 = timeit.default_timer() # Start timer
|
124 |
st.write(f"向量库装载开始:{start_4}")
|
125 |
+
st.session_state.loadedindex = load_index_from_storage(storage_context=st.session_state.storage_context, service_context=st.session_state.service_context)
|
126 |
end_4 = timeit.default_timer() # Start timer
|
127 |
st.write(f"向量库装载结束:{end_4}")
|
128 |
st.write(f"向量库装载耗时:{end_4 - start_4}")
|
129 |
|
130 |
+
st.session_state.query_engine = st.session_state.loadedindex.as_query_engine()
|
131 |
+
|
132 |
+
st.session_state.user_question=st.text_input("Enter your query:")
|
133 |
+
if st.session_state.user_question !="" and not st.session_state.user_question.strip().isspace() and not st.session_state.user_question == "" and not st.session_state.user_question.strip() == "" and not st.session_state.user_question.isspace():
|
134 |
+
print("user question: "+st.session_state.user_question)
|
135 |
with st.spinner("AI Thinking...Please wait a while to Cheers!"):
|
136 |
start_5 = timeit.default_timer() # Start timer
|
137 |
st.write(f"Query Engine - AI QA开始:{start_5}")
|
138 |
+
initial_response = st.session_state.query_engine.query(st.session_state.user_question)
|
139 |
temp_ai_response=str(initial_response)
|
140 |
final_ai_response=temp_ai_response.partition('<|end|>')[0]
|
141 |
print("AI Response:\n"+final_ai_response)
|