binqiangliu commited on
Commit
7d30953
·
1 Parent(s): 6ea0b62

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -0
app.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from llama_index import VectorStoreIndex, SimpleDirectoryReader
3
+ from langchain.embeddings.huggingface import HuggingFaceEmbeddings
4
+ from llama_index import LangchainEmbedding, ServiceContext
5
+ from llama_index import StorageContext, load_index_from_storage
6
+ from llama_index import LLMPredictor
7
+ #from transformers import HuggingFaceHub
8
+ from langchain import HuggingFaceHub
9
+ from streamlit.components.v1 import html
10
+ from pathlib import Path
11
+ from time import sleep
12
+ import random
13
+ import string
14
+
15
+ import os
16
+ from dotenv import load_dotenv
17
+ load_dotenv()
18
+
19
+ st.set_page_config(page_title="Open AI Doc-Chat Assistant", layout="wide")
20
+ st.subheader("Open AI Doc-Chat Assistant: Life Enhancing with AI!")
21
+
22
+ css_file = "main.css"
23
+ with open(css_file) as f:
24
+ st.markdown("<style>{}</style>".format(f.read()), unsafe_allow_html=True)
25
+
26
+ HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
27
+
28
+ documents=[]
29
+
30
+ def generate_random_string(length):
31
+ letters = string.ascii_lowercase
32
+ return ''.join(random.choice(letters) for i in range(length))
33
+ random_string = generate_random_string(20)
34
+ directory_path=random_string
35
+
36
+ with st.sidebar:
37
+ st.subheader("Upload your Documents Here: ")
38
+ pdf_files = st.file_uploader("Choose your PDF Files and Press OK", type=['pdf'], accept_multiple_files=True)
39
+ if pdf_files:
40
+ os.makedirs(directory_path)
41
+ for pdf_file in pdf_files:
42
+ file_path = os.path.join(directory_path, pdf_file.name)
43
+ with open(file_path, 'wb') as f:
44
+ f.write(pdf_file.read())
45
+ st.success(f"File '{pdf_file.name}' saved successfully.")
46
+
47
+ try:
48
+ documents = SimpleDirectoryReader(directory_path).load_data()
49
+ except Exception as e:
50
+ print("waiting for path creation.")
51
+
52
+
53
+ # Load documents from a directory
54
+ #documents = SimpleDirectoryReader('data').load_data()
55
+
56
+ embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2'))
57
+
58
+ llm_predictor = LLMPredictor(HuggingFaceHub(repo_id="HuggingFaceH4/starchat-beta", model_kwargs={"min_length":100, "max_new_tokens":1024, "do_sample":True, "temperature":0.2,"top_k":50, "top_p":0.95, "eos_token_id":49155}))
59
+
60
+ service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, embed_model=embed_model)
61
+
62
+ new_index = VectorStoreIndex.from_documents(
63
+ documents,
64
+ service_context=service_context,
65
+ )
66
+
67
+ new_index.storage_context.persist("directory_path")
68
+
69
+ storage_context = StorageContext.from_defaults(persist_dir="directory_path")
70
+
71
+ loadedindex = load_index_from_storage(storage_context=storage_context, service_context=service_context)
72
+
73
+ query_engine = loadedindex.as_query_engine()
74
+
75
+ user_question = st.text_input("Enter your query here:")
76
+ if user_question !="" and not user_question.strip().isspace() and not user_question == "" and not user_question.strip() == "" and not user_question.isspace():
77
+ initial_response = query_engine.query(user_question)
78
+ temp_ai_response=str(initial_response)
79
+ final_ai_response=temp_ai_response.partition('<|end|>')[0]
80
+ print("AI Response:\n"+final_ai_response)
81
+ st.write("AI Response:\n\n"+final_ai_response)