binqiangliu commited on
Commit
656fdc6
·
1 Parent(s): d8b389b

Create app002-py

Browse files
Files changed (1) hide show
  1. app002-py +131 -0
app002-py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #删除了documents=[]
2
+ #将st.session_state的变量全部移动到相应的变量第一次出现位置,而不是在最开始全部声明为None
3
+ #将pdf_files = st.file_uploader("Choose your PDF Files and Press OK", type=['pdf'], accept_multiple_files=True)
4
+ #修改为if "pdf_files" not in st.session_state:
5
+ # st.session_state.pdf_files = st.file_uploader("Choose your PDF Files and Press OK", type=['pdf'], accept_multiple_files=True)
6
+ #if not st.session_state.pdf_files:
7
+ #意思就是如果st.session_state.pdf_files为空,就停止执行程序
8
+
9
+ import streamlit as st
10
+ from llama_index import VectorStoreIndex, SimpleDirectoryReader
11
+ from langchain.embeddings.huggingface import HuggingFaceEmbeddings
12
+ from llama_index import LangchainEmbedding, ServiceContext
13
+ from llama_index import StorageContext, load_index_from_storage
14
+ from llama_index import LLMPredictor
15
+ #from transformers import HuggingFaceHub
16
+ from langchain import HuggingFaceHub
17
+ from streamlit.components.v1 import html
18
+ from pathlib import Path
19
+ from time import sleep
20
+ import random
21
+ import string
22
+
23
+ import os
24
+ from dotenv import load_dotenv
25
+ load_dotenv()
26
+
27
+ import timeit
28
+
29
+ st.set_page_config(page_title="Open AI Doc-Chat Assistant", layout="wide")
30
+ st.subheader("Open AI Doc-Chat Assistant: Life Enhancing with AI!")
31
+
32
+ css_file = "main.css"
33
+ with open(css_file) as f:
34
+ st.markdown("<style>{}</style>".format(f.read()), unsafe_allow_html=True)
35
+
36
+ HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
37
+
38
+ def generate_random_string(length):
39
+ letters = string.ascii_lowercase
40
+ return ''.join(random.choice(letters) for i in range(length))
41
+
42
+ #random_string = generate_random_string(20)
43
+ #directory_path=random_string
44
+
45
+ if "directory_path" not in st.session_state:
46
+ st.session_state.directory_path = generate_random_string(20)
47
+
48
+ with st.sidebar:
49
+ st.subheader("Upload your Documents Here: ")
50
+ if "pdf_files" not in st.session_state:
51
+ st.session_state.pdf_files = st.file_uploader("Choose your PDF Files and Press OK", type=['pdf'], accept_multiple_files=True)
52
+ if not st.session_state.pdf_files: #如果没有上传文件,则程序停止执行,就不会出现documents为空的错误情况
53
+ st.warning("请上传文档文件")
54
+ st.stop()
55
+ else: #如果已经上传文件,则装载文件SimpleDirectoryReader.load_data()
56
+ st.session_state.pdf_files=pdf_files
57
+ if not os.path.exists(st.session_state.directory_path):
58
+ os.makedirs(st.session_state.directory_path)
59
+ for pdf_file in st.session_state.pdf_files:
60
+ #for pdf_file in pdf_files:
61
+ file_path = os.path.join(st.session_state.directory_path, pdf_file.name)
62
+ with open(file_path, 'wb') as f:
63
+ f.write(pdf_file.read())
64
+ st.success(f"File '{pdf_file.name}' saved successfully.")
65
+ try:
66
+ start_1 = timeit.default_timer() # Start timer
67
+ st.write(f"QA文档加载开始:{start_1}")
68
+ if "documents" not in st.session_state:
69
+ st.session_state.documents = SimpleDirectoryReader(st.session_state.directory_path).load_data()
70
+ end_1 = timeit.default_timer() # Start timer
71
+ st.write(f"QA文档加载结束:{end_1}")
72
+ st.write(f"QA文档加载耗时:{end_1 - start_1}")
73
+ except Exception as e:
74
+ print("文档加载出现问题/Waiting for path creation.")
75
+
76
+ # Load documents from a directory
77
+ #documents = SimpleDirectoryReader('data').load_data()
78
+
79
+ start_2 = timeit.default_timer() # Start timer
80
+ st.write(f"向量模型加载开始:{start_2}")
81
+ if "embed_model" not in st.session_state:
82
+ st.session_state.embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2'))
83
+ end_2 = timeit.default_timer() # Start timer
84
+ st.write(f"向量模型加载加载结束:{end_2}")
85
+ st.write(f"向量模型加载耗时:{end_2 - start_2}")
86
+
87
+ if "llm_predictor" not in st.session_state:
88
+ st.session_state.llm_predictor = LLMPredictor(HuggingFaceHub(repo_id="HuggingFaceH4/starchat-beta", model_kwargs={"min_length":100, "max_new_tokens":1024, "do_sample":True, "temperature":0.2,"top_k":50, "top_p":0.95, "eos_token_id":49155}))
89
+
90
+ if "service_context" not in st.session_state:
91
+ st.session_state.service_context = ServiceContext.from_defaults(llm_predictor=st.session_state.llm_predictor, embed_model=st.session_state.embed_model)
92
+
93
+ start_3 = timeit.default_timer() # Start timer
94
+ st.write(f"向量库构建开始:{start_3}")
95
+ if "new_index" not in st.session_state:
96
+ st.session_state.new_index = VectorStoreIndex.from_documents(
97
+ st.session_state.documents,
98
+ service_context=st.session_state.service_context,
99
+ )
100
+ end_3 = timeit.default_timer() # Start timer
101
+ st.write(f"向量库构建结束:{end_3}")
102
+ st.write(f"向量库构建耗时:{end_3 - start_3}")
103
+
104
+ st.session_state.new_index.storage_context.persist("st.session_state.directory_path")
105
+
106
+ if "storage_context" not in st.session_state:
107
+ st.session_state.storage_context = StorageContext.from_defaults(persist_dir="st.session_state.directory_path")
108
+
109
+ start_4 = timeit.default_timer() # Start timer
110
+ st.write(f"向量库装载开始:{start_4}")
111
+ if "loadedindex" not in st.session_state:
112
+ st.session_state.loadedindex = load_index_from_storage(storage_context=st.session_state.storage_context, service_context=st.session_state.service_context)
113
+ end_4 = timeit.default_timer() # Start timer
114
+ st.write(f"向量库装载结束:{end_4}")
115
+ st.write(f"向量库装载耗时:{end_4 - start_4}")
116
+
117
+ if "query_engine" not in st.session_state:
118
+ st.session_state.query_engine = st.session_state.loadedindex.as_query_engine()
119
+
120
+ if "user_question " not in st.session_state:
121
+ st.session_state.user_question = st.text_input("Enter your query:")
122
+ if st.session_state.user_question !="" and not st.session_state.user_question.strip().isspace() and not st.session_state.user_question == "" and not st.session_state.user_question.strip() == "" and not st.session_state.user_question.isspace():
123
+ print("user question: "+st.session_state.user_question)
124
+ with st.spinner("AI Thinking...Please wait a while to Cheers!"):
125
+ start_5 = timeit.default_timer() # Start timer
126
+ st.write(f"Query Engine - AI QA开始:{start_5}")
127
+ initial_response = st.session_state.query_engine.query(st.session_state.user_question)
128
+ temp_ai_response=str(initial_response)
129
+ final_ai_response=temp_ai_response.partition('<|end|>')[0]
130
+ print("AI Response:\n"+final_ai_response)
131
+ st.write("AI Response:\n\n"+final_ai_response)