Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from llama_index import VectorStoreIndex, SimpleDirectoryReader | |
| from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
| from llama_index import LangchainEmbedding, ServiceContext | |
| from llama_index import StorageContext, load_index_from_storage | |
| from llama_index import LLMPredictor | |
| #from transformers import HuggingFaceHub | |
| from langchain import HuggingFaceHub | |
| from streamlit.components.v1 import html | |
| from pathlib import Path | |
| from time import sleep | |
| import random | |
| import string | |
| import os | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| st.set_page_config(page_title="Open AI Doc-Chat Assistant", layout="wide") | |
| st.subheader("Open AI Doc-Chat Assistant: Life Enhancing with AI!") | |
| css_file = "main.css" | |
| with open(css_file) as f: | |
| st.markdown("<style>{}</style>".format(f.read()), unsafe_allow_html=True) | |
| HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
| documents=[] | |
| def generate_random_string(length): | |
| letters = string.ascii_lowercase | |
| return ''.join(random.choice(letters) for i in range(length)) | |
| random_string = generate_random_string(20) | |
| directory_path=random_string | |
| with st.sidebar: | |
| st.subheader("Upload your Documents Here: ") | |
| pdf_files = st.file_uploader("Choose your PDF Files and Press OK", type=['pdf'], accept_multiple_files=True) | |
| if pdf_files: | |
| os.makedirs(directory_path) | |
| for pdf_file in pdf_files: | |
| file_path = os.path.join(directory_path, pdf_file.name) | |
| with open(file_path, 'wb') as f: | |
| f.write(pdf_file.read()) | |
| st.success(f"File '{pdf_file.name}' saved successfully.") | |
| try: | |
| documents = SimpleDirectoryReader(directory_path).load_data() | |
| except Exception as e: | |
| print("waiting for path creation.") | |
| # Load documents from a directory | |
| #documents = SimpleDirectoryReader('data').load_data() | |
| embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')) | |
| llm_predictor = LLMPredictor(HuggingFaceHub(repo_id="HuggingFaceH4/starchat-beta", model_kwargs={"min_length":100, "max_new_tokens":1024, "do_sample":True, "temperature":0.2,"top_k":50, "top_p":0.95, "eos_token_id":49155})) | |
| service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, embed_model=embed_model) | |
| new_index = VectorStoreIndex.from_documents( | |
| documents, | |
| service_context=service_context, | |
| ) | |
| new_index.storage_context.persist("directory_path") | |
| storage_context = StorageContext.from_defaults(persist_dir="directory_path") | |
| loadedindex = load_index_from_storage(storage_context=storage_context, service_context=service_context) | |
| query_engine = loadedindex.as_query_engine() | |
| user_question = st.text_input("Enter your query here:") | |
| if user_question !="" and not user_question.strip().isspace() and not user_question == "" and not user_question.strip() == "" and not user_question.isspace(): | |
| initial_response = query_engine.query(user_question) | |
| temp_ai_response=str(initial_response) | |
| final_ai_response=temp_ai_response.partition('<|end|>')[0] | |
| print("AI Response:\n"+final_ai_response) | |
| st.write("AI Response:\n\n"+final_ai_response) |