File size: 5,804 Bytes
24680b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a40124
24680b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#这个版本有个问题,如果在运行状况下,增删文件,不会重新装载文件并构建向量数据库!
#最后只能够通过添加按钮的方式,手动解决这个问题!!!
#尝试设置一个判断变量file_uploaded

import streamlit as st
from llama_index import VectorStoreIndex, SimpleDirectoryReader
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from llama_index import LangchainEmbedding, ServiceContext
from llama_index import StorageContext, load_index_from_storage
from llama_index import LLMPredictor
#from transformers import HuggingFaceHub
from langchain import HuggingFaceHub
from streamlit.components.v1 import html
from pathlib import Path
from time import sleep
import random
import string

import os
from dotenv import load_dotenv
load_dotenv()

import timeit

st.set_page_config(page_title="Open AI Doc-Chat Assistant", layout="wide")
st.subheader("Open AI Doc-Chat Assistant: Life Enhancing with AI!")

css_file = "main.css"
with open(css_file) as f:
    st.markdown("<style>{}</style>".format(f.read()), unsafe_allow_html=True)
    
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")

def generate_random_string(length):
    letters = string.ascii_lowercase
    return ''.join(random.choice(letters) for i in range(length))  

if "query_engine" not in st.session_state:
    st.session_state.query_engine = None

if "file_uploaded" not in st.session_state:
    st.session_state.file_uploaded = False    

with st.sidebar:
    st.subheader("Upload your pdf Documents Here: ")
    pdf_files = st.file_uploader("Choose your PDF Files and Press OK", type=['pdf'], accept_multiple_files=True)
    if not pdf_files:
        st.warning("请上传文档文件")
        st.stop()      
    else:
        st.session_state.file_uploaded = True
        
if st.session_state.file_uploaded:    
    uploadedfile_path=generate_random_string(20)        
    os.makedirs(uploadedfile_path)
    for pdf_file in pdf_files:
        file_path = os.path.join(uploadedfile_path, pdf_file.name)
        with open(file_path, 'wb') as f:
            f.write(pdf_file.read())
        st.success(f"File '{pdf_file.name}' saved successfully.")
#    if st.button('Process for QA'):    
    try:
        start_1 = timeit.default_timer() # Start timer
        st.write(f"QA文档加载开始:{start_1}")        
        documents = SimpleDirectoryReader(uploadedfile_path).load_data()
        end_1 = timeit.default_timer() # Start timer
        st.write(f"QA文档加载结束:{end_1}")
        st.write(f"QA文档加载耗时:{end_1 - start_1}")
    except Exception as e:
        print("文档加载出现问题/Waiting for path creation.")
        st.warning("文档加载出现问题/Waiting for path creation.")
        st.stop()         
    start_2 = timeit.default_timer() # Start timer
    st.write(f"向量模型加载开始:{start_2}")
    if "embed_model" not in st.session_state:
        st.session_state.embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2'))
    end_2 = timeit.default_timer() # Start timer
    st.write(f"向量模型加载结束:{end_2}")
    st.write(f"向量模型加载耗时:{end_2 - start_2}")
    if "llm_predictor" not in st.session_state:
        st.session_state.llm_predictor = LLMPredictor(HuggingFaceHub(repo_id="HuggingFaceH4/starchat-beta", model_kwargs={"min_length":100, "max_new_tokens":1024, "do_sample":True, "temperature":0.2,"top_k":50, "top_p":0.95, "eos_token_id":49155}))
    if "service_context" not in st.session_state:
        st.session_state.service_context = ServiceContext.from_defaults(llm_predictor=st.session_state.llm_predictor, embed_model=st.session_state.embed_model)
    start_3 = timeit.default_timer() # Start timer
    st.write(f"向量库构建开始:{start_3}")
    new_index = VectorStoreIndex.from_documents(documents, service_context=st.session_state.service_context)
    end_3 = timeit.default_timer() # Start timer
    st.write(f"向量库构建结束:{end_3}")
    st.write(f"向量库构建耗时:{end_3 - start_3}")
    directory_path = generate_random_string(20)
    os.makedirs(directory_path)
    new_index.storage_context.persist("directory_path")
    storage_context = StorageContext.from_defaults(persist_dir="directory_path")
    start_4 = timeit.default_timer() # Start timer
    st.write(f"向量库装载开始:{start_4}")
    loadedindex = load_index_from_storage(storage_context=storage_context, service_context=st.session_state.service_context)
    end_4 = timeit.default_timer() # Start timer
    st.write(f"向量库装载结束:{end_4}")
    st.write(f"向量库装载耗时:{end_4 - start_4}")
    query_engine = loadedindex.as_query_engine()
    st.session_state.query_engine = query_engine    
    
user_question = st.text_input("Enter your query:")
if user_question != "" and not user_question.strip().isspace() and not user_question == "" and not user_question.strip() == "" and not user_question.isspace() and st.session_state.query_engine is not None:
    print("user question: "+user_question)
    with st.spinner("AI Thinking...Please wait a while to Cheers!"):
        start_5 = timeit.default_timer() # Start timer
        st.write(f"Query Engine - AI QA开始:{start_5}") 
        initial_response = st.session_state.query_engine.query(user_question)
        end_5 = timeit.default_timer() # Start timer
        st.write(f"Query Engine - AI QA结束:{end_5}")
        st.write(f"Query Engine - AI QA耗时:{end_5 - start_5}")        
        temp_ai_response=str(initial_response)
        final_ai_response=temp_ai_response.partition('<|end|>')[0] 
        print("AI Response:\n"+final_ai_response)
        st.write("AI Response:\n\n"+final_ai_response)