nobita-gpt / gpt_index /readers /file /image_parser.py
binhnase04854's picture
first deploy
b699122
"""Image parser.
Contains parsers for image files.
"""
import re
from pathlib import Path
from typing import Dict, Optional
from gpt_index.readers.file.base_parser import BaseParser, ImageParserOutput
class ImageParser(BaseParser):
"""Image parser.
Extract text from images using DONUT.
"""
def __init__(
self,
parser_config: Optional[Dict] = None,
keep_image: bool = False,
parse_text: bool = True,
):
"""Init params."""
self._parser_config = parser_config
self._keep_image = keep_image
self._parse_text = parse_text
def _init_parser(self) -> Dict:
"""Init parser."""
if not self._parse_text:
return {}
try:
import torch # noqa: F401
except ImportError:
raise ImportError(
"install pytorch to use the model: " "`pip install torch`"
)
try:
from transformers import DonutProcessor, VisionEncoderDecoderModel
except ImportError:
raise ImportError(
"transformers is required for using DONUT model: "
"`pip install transformers`"
)
try:
import sentencepiece # noqa: F401
except ImportError:
raise ImportError(
"sentencepiece is required for using DONUT model: "
"`pip install sentencepiece`"
)
try:
from PIL import Image # noqa: F401
except ImportError:
raise ImportError(
"PIL is required to read image files: " "`pip install Pillow`"
)
processor = DonutProcessor.from_pretrained(
"naver-clova-ix/donut-base-finetuned-cord-v2"
)
model = VisionEncoderDecoderModel.from_pretrained(
"naver-clova-ix/donut-base-finetuned-cord-v2"
)
return {"processor": processor, "model": model}
def parse_file(self, file: Path, errors: str = "ignore") -> ImageParserOutput:
"""Parse file."""
from PIL import Image
from gpt_index.img_utils import img_2_b64
# load document image
image = Image.open(file)
if image.mode != "RGB":
image = image.convert("RGB")
# Encode image into base64 string and keep in document
image_str: Optional[str] = None
if self._keep_image:
image_str = img_2_b64(image)
# Parse image into text
text_str: str = ""
if self._parse_text:
import torch
model = self.parser_config["model"]
processor = self.parser_config["processor"]
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# prepare decoder inputs
task_prompt = "<s_cord-v2>"
decoder_input_ids = processor.tokenizer(
task_prompt, add_special_tokens=False, return_tensors="pt"
).input_ids
pixel_values = processor(image, return_tensors="pt").pixel_values
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=3,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
processor.tokenizer.pad_token, ""
)
# remove first task start token
text_str = re.sub(r"<.*?>", "", sequence, count=1).strip()
return ImageParserOutput(
text=text_str,
image=image_str,
)