binhnase04854's picture
first deploy
b699122
"""Guardrails output parser.
See https://github.com/ShreyaR/guardrails.
"""
try:
from guardrails import Guard
except ImportError:
Guard = None
PromptCallable = None
from copy import deepcopy
from typing import Any, Callable, Optional
from langchain.llms.base import BaseLLM
from gpt_index.output_parsers.base import BaseOutputParser
def get_callable(llm: Optional[BaseLLM]) -> Optional[Callable]:
"""Get callable."""
if llm is None:
return None
return llm.__call__
class GuardrailsOutputParser(BaseOutputParser):
"""Guardrails output parser."""
def __init__(
self,
guard: Guard,
llm: Optional[BaseLLM] = None,
format_key: Optional[str] = None,
):
"""Initialize a Guardrails output parser."""
self.guard: Guard = guard
self.llm = llm
self.format_key = format_key
@classmethod
def from_rail(
cls, rail: str, llm: Optional[BaseLLM] = None
) -> "GuardrailsOutputParser":
"""From rail."""
if Guard is None:
raise ImportError(
"Guardrails is not installed. Run `pip install guardrails-ai`. "
)
return cls(Guard.from_rail(rail), llm=llm)
@classmethod
def from_rail_string(
cls, rail_string: str, llm: Optional[BaseLLM] = None
) -> "GuardrailsOutputParser":
"""From rail string."""
if Guard is None:
raise ImportError(
"Guardrails is not installed. Run `pip install guardrails-ai`. "
)
return cls(Guard.from_rail_string(rail_string), llm=llm)
def parse(
self,
output: str,
llm: Optional[BaseLLM] = None,
num_reasks: Optional[int] = 1,
*args: Any,
**kwargs: Any
) -> Any:
"""Parse, validate, and correct errors programmatically."""
llm = llm or self.llm
llm_fn = get_callable(llm)
return self.guard.parse(
output, llm_api=llm_fn, num_reasks=num_reasks, *args, **kwargs
)
def format(self, query: str) -> str:
"""Format a query with structured output formatting instructions."""
output_schema_text = deepcopy(self.guard.rail.prompt)
# Add format instructions here.
format_instructions_tmpl = self.guard.raw_prompt.format_instructions
# NOTE: output_schema is fixed
format_instructions = format_instructions_tmpl.format(
output_schema=output_schema_text
)
if self.format_key is not None:
fmt_query = query.format(**{self.format_key: format_instructions})
else:
fmt_query = query + "\n\n" + format_instructions
return fmt_query