Spaces:
Runtime error
Runtime error
File size: 8,414 Bytes
b699122 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
"""Simple reader that reads files of different formats from a directory."""
import logging
from copy import deepcopy
from pathlib import Path
from typing import Callable, Dict, Generator, List, Optional, Union, cast
from gpt_index.readers.base import BaseReader
from gpt_index.readers.file.base_parser import BaseParser, ImageParserOutput
from gpt_index.readers.file.docs_parser import DocxParser, PDFParser
from gpt_index.readers.file.epub_parser import EpubParser
from gpt_index.readers.file.image_parser import ImageParser
from gpt_index.readers.file.markdown_parser import MarkdownParser
from gpt_index.readers.file.mbox_parser import MboxParser
from gpt_index.readers.file.slides_parser import PptxParser
from gpt_index.readers.file.tabular_parser import PandasCSVParser
from gpt_index.readers.file.video_audio import VideoAudioParser
from gpt_index.readers.schema.base import Document, ImageDocument
DEFAULT_FILE_EXTRACTOR: Dict[str, BaseParser] = {
".pdf": PDFParser(),
".docx": DocxParser(),
".pptx": PptxParser(),
".jpg": ImageParser(),
".png": ImageParser(),
".jpeg": ImageParser(),
".mp3": VideoAudioParser(),
".mp4": VideoAudioParser(),
".csv": PandasCSVParser(),
".epub": EpubParser(),
".md": MarkdownParser(),
".mbox": MboxParser(),
}
logger = logging.getLogger(__name__)
class SimpleDirectoryReader(BaseReader):
"""Simple directory reader.
Can read files into separate documents, or concatenates
files into one document text.
Args:
input_dir (str): Path to the directory.
input_files (List): List of file paths to read
(Optional; overrides input_dir, exclude)
exclude (List): glob of python file paths to exclude (Optional)
exclude_hidden (bool): Whether to exclude hidden files (dotfiles).
errors (str): how encoding and decoding errors are to be handled,
see https://docs.python.org/3/library/functions.html#open
recursive (bool): Whether to recursively search in subdirectories.
False by default.
required_exts (Optional[List[str]]): List of required extensions.
Default is None.
file_extractor (Optional[Dict[str, BaseParser]]): A mapping of file
extension to a BaseParser class that specifies how to convert that file
to text. See DEFAULT_FILE_EXTRACTOR.
num_files_limit (Optional[int]): Maximum number of files to read.
Default is None.
file_metadata (Optional[Callable[str, Dict]]): A function that takes
in a filename and returns a Dict of metadata for the Document.
Default is None.
"""
def __init__(
self,
input_dir: Optional[str] = None,
input_files: Optional[List] = None,
exclude: Optional[List] = None,
exclude_hidden: bool = True,
errors: str = "ignore",
recursive: bool = False,
required_exts: Optional[List[str]] = None,
file_extractor: Optional[Dict[str, BaseParser]] = None,
num_files_limit: Optional[int] = None,
file_metadata: Optional[Callable[[str], Dict]] = None,
) -> None:
"""Initialize with parameters."""
super().__init__()
if not input_dir and not input_files:
raise ValueError("Must provide either `input_dir` or `input_files`.")
self.errors = errors
self.exclude = exclude
self.recursive = recursive
self.exclude_hidden = exclude_hidden
self.required_exts = required_exts
self.num_files_limit = num_files_limit
if input_files:
self.input_files = []
for path in input_files:
input_file = Path(path)
self.input_files.append(input_file)
elif input_dir:
self.input_dir = Path(input_dir)
self.exclude = exclude
self.input_files = self._add_files(self.input_dir)
self.file_extractor = file_extractor or DEFAULT_FILE_EXTRACTOR
self.file_metadata = file_metadata
def _add_files(self, input_dir: Path) -> List[Path]:
"""Add files."""
all_files = set()
rejected_files = set()
if self.exclude is not None:
for excluded_pattern in self.exclude:
if self.recursive:
# Recursive glob
for file in input_dir.rglob(excluded_pattern):
rejected_files.add(Path(file))
else:
# Non-recursive glob
for file in input_dir.glob(excluded_pattern):
rejected_files.add(Path(file))
file_refs: Generator[Path, None, None]
if self.recursive:
file_refs = Path(input_dir).rglob("*")
else:
file_refs = Path(input_dir).glob("*")
for ref in file_refs:
# Manually check if file is hidden or directory instead of
# in glob for backwards compatibility.
is_dir = ref.is_dir()
skip_because_hidden = self.exclude_hidden and ref.name.startswith(".")
skip_because_bad_ext = (
self.required_exts is not None and ref.suffix not in self.required_exts
)
skip_because_excluded = ref in rejected_files
if (
is_dir
or skip_because_hidden
or skip_because_bad_ext
or skip_because_excluded
):
continue
else:
all_files.add(ref)
new_input_files = sorted(list(all_files))
if self.num_files_limit is not None and self.num_files_limit > 0:
new_input_files = new_input_files[0 : self.num_files_limit]
# print total number of files added
logger.debug(
f"> [SimpleDirectoryReader] Total files added: {len(new_input_files)}"
)
return new_input_files
def load_data(self, concatenate: bool = False) -> List[Document]:
"""Load data from the input directory.
Args:
concatenate (bool): whether to concatenate all text docs into a single doc.
If set to True, file metadata is ignored. False by default.
This setting does not apply to image docs (always one doc per image).
Returns:
List[Document]: A list of documents.
"""
# TODO: refactor parser output interface
data: Union[str, List[str], ImageParserOutput] = ""
data_list: List[str] = []
metadata_list: List[Optional[dict]] = []
image_docs: List[ImageDocument] = []
for input_file in self.input_files:
if input_file.suffix in self.file_extractor:
parser = self.file_extractor[input_file.suffix]
if not parser.parser_config_set:
parser.init_parser()
data = parser.parse_file(input_file, errors=self.errors)
else:
# do standard read
with open(input_file, "r", errors=self.errors, encoding="utf8") as f:
data = f.read()
metadata: Optional[dict] = None
if self.file_metadata is not None:
metadata = self.file_metadata(str(input_file))
if isinstance(data, ImageParserOutput):
# process image
image_docs.append(
ImageDocument(text=data.text, extra_info=metadata, image=data.image)
)
elif isinstance(data, List):
# process list of str
data_list.extend(data)
repeated_metadata: List[Optional[dict]] = [
deepcopy(metadata) for _ in range(len(data))
]
metadata_list.extend(repeated_metadata)
else:
# process single str
data_list.append(str(data))
metadata_list.append(metadata)
if concatenate:
text_docs = [Document("\n".join(data_list))]
elif self.file_metadata is not None:
text_docs = [
Document(d, extra_info=m) for d, m in zip(data_list, metadata_list)
]
else:
text_docs = [Document(d) for d in data_list]
return text_docs + cast(List[Document], image_docs)
|