File size: 7,590 Bytes
b699122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""Evaluating the responses from an index."""
from __future__ import annotations

from typing import List, Optional

from gpt_index import (
    Document,
    GPTListIndex,
    QuestionAnswerPrompt,
    RefinePrompt,
    Response,
    ServiceContext,
)

DEFAULT_EVAL_PROMPT = (
    "Please tell if a given piece of information "
    "is supported by the context.\n"
    "You need to answer with either YES or NO.\n"
    "Answer YES if any of the context supports the information, even "
    "if most of the context is unrelated. "
    "Some examples are provided below. \n\n"
    "Information: Apple pie is generally double-crusted.\n"
    "Context: An apple pie is a fruit pie in which the principal filling "
    "ingredient is apples. \n"
    "Apple pie is often served with whipped cream, ice cream "
    "('apple pie à la mode'), custard or cheddar cheese.\n"
    "It is generally double-crusted, with pastry both above "
    "and below the filling; the upper crust may be solid or "
    "latticed (woven of crosswise strips).\n"
    "Answer: YES\n"
    "Information: Apple pies tastes bad.\n"
    "Context: An apple pie is a fruit pie in which the principal filling "
    "ingredient is apples. \n"
    "Apple pie is often served with whipped cream, ice cream "
    "('apple pie à la mode'), custard or cheddar cheese.\n"
    "It is generally double-crusted, with pastry both above "
    "and below the filling; the upper crust may be solid or "
    "latticed (woven of crosswise strips).\n"
    "Answer: NO\n"
    "Information: {query_str}\n"
    "Context: {context_str}\n"
    "Answer: "
)

DEFAULT_REFINE_PROMPT = (
    "We want to understand if the following information is present "
    "in the context information: {query_str}\n"
    "We have provided an existing YES/NO answer: {existing_answer}\n"
    "We have the opportunity to refine the existing answer "
    "(only if needed) with some more context below.\n"
    "------------\n"
    "{context_msg}\n"
    "------------\n"
    "If the existing answer was already YES, still answer YES. "
    "If the information is present in the new context, answer YES. "
    "Otherwise answer NO.\n"
)

QUERY_RESPONSE_EVAL_PROMPT = (
    "Your task is to evaluate if the response for the query \
    is in line with the context information provided.\n"
    "You have two options to answer. Either YES/ NO.\n"
    "Answer - YES, if the response for the query \
    is in line with context information otherwise NO.\n"
    "Query and Response: \n {query_str}\n"
    "Context: \n {context_str}\n"
    "Answer: "
)

QUERY_RESPONSE_REFINE_PROMPT = (
    "We want to understand if the following query and response is"
    "in line with the context information: \n {query_str}\n"
    "We have provided an existing YES/NO answer: \n {existing_answer}\n"
    "We have the opportunity to refine the existing answer "
    "(only if needed) with some more context below.\n"
    "------------\n"
    "{context_msg}\n"
    "------------\n"
    "If the existing answer was already YES, still answer YES. "
    "If the information is present in the new context, answer YES. "
    "Otherwise answer NO.\n"
)


class ResponseEvaluator:
    """Evaluate based on response from indices.

    NOTE: this is a beta feature, subject to change!

    Args:
        service_context (Optional[ServiceContext]): ServiceContext object

    """

    def __init__(
        self,
        service_context: Optional[ServiceContext] = None,
    ) -> None:
        """Init params."""
        self.service_context = service_context or ServiceContext.from_defaults()

    def get_context(self, response: Response) -> List[Document]:
        """Get context information from given Response object using source nodes.

        Args:
            response (Response): Response object from an index based on the query.

        Returns:
            List of Documents of source nodes information as context information.
        """

        context = []

        for context_info in response.source_nodes:
            context.append(Document(context_info.source_text))

        return context

    def evaluate(self, response: Response) -> str:
        """Evaluate the response from an index.

        Args:
            query: Query for which response is generated from index.
            response: Response object from an index based on the query.
        Returns:
            Yes -> If answer, context information are matching \
                    or If Query, answer and context information are matching.
            No -> If answer, context information are not matching \
                    or If Query, answer and context information are not matching.
        """
        answer = str(response)

        context = self.get_context(response)
        index = GPTListIndex.from_documents(
            context, service_context=self.service_context
        )
        response_txt: str = ""

        EVAL_PROMPT_TMPL = QuestionAnswerPrompt(DEFAULT_EVAL_PROMPT)
        REFINE_PROMPT_TMPL = RefinePrompt(DEFAULT_REFINE_PROMPT)

        response_obj = index.query(
            answer,
            text_qa_template=EVAL_PROMPT_TMPL,
            refine_template=REFINE_PROMPT_TMPL,
        )
        response_txt = str(response_obj)

        return response_txt


class QueryResponseEvaluator:
    """Evaluate based on query and response from indices.

    NOTE: this is a beta feature, subject to change!

    Args:
        service_context (Optional[ServiceContext]): ServiceContext object

    """

    def __init__(
        self,
        service_context: Optional[ServiceContext] = None,
    ) -> None:
        """Init params."""
        self.service_context = service_context or ServiceContext.from_defaults()

    def get_context(self, response: Response) -> List[Document]:
        """Get context information from given Response object using source nodes.

        Args:
            response (Response): Response object from an index based on the query.

        Returns:
            List of Documents of source nodes information as context information.
        """

        context = []

        for context_info in response.source_nodes:
            context.append(Document(context_info.source_text))

        return context

    def evaluate(self, query: str, response: Response) -> str:
        """Evaluate the response from an index.

        Args:
            query: Query for which response is generated from index.
            response: Response object from an index based on the query.
        Returns:
            Yes -> If answer, context information are matching \
                    or If Query, answer and context information are matching.
            No -> If answer, context information are not matching \
                    or If Query, answer and context information are not matching.
        """
        answer = str(response)

        context = self.get_context(response)
        index = GPTListIndex.from_documents(
            context, service_context=self.service_context
        )
        response_txt: str = ""

        QUERY_RESPONSE_EVAL_PROMPT_TMPL = QuestionAnswerPrompt(
            QUERY_RESPONSE_EVAL_PROMPT
        )
        QUERY_RESPONSE_REFINE_PROMPT_TMPL = RefinePrompt(QUERY_RESPONSE_REFINE_PROMPT)

        query_response = f"Question: {query}\nResponse: {answer}"

        response_obj = index.query(
            query_response,
            text_qa_template=QUERY_RESPONSE_EVAL_PROMPT_TMPL,
            refine_template=QUERY_RESPONSE_REFINE_PROMPT_TMPL,
        )
        response_txt = str(response_obj)

        return response_txt