Spaces:
Sleeping
Sleeping
File size: 7,627 Bytes
861182c d2efd6d 861182c 23057e8 861182c d2efd6d 23057e8 861182c 23057e8 861182c 23057e8 861182c 23057e8 861182c 23057e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import pandas as pd
import tensorflow as tf
import tf_keras as keras
from constants import (PROCESSED_DATA_DIR,
METADATA_FILEPATH,
BATCH_SIZE,
EPOCHS,
BERT_BASE,
MAX_SEQUENCE_LENGHT,
PROJECT_NAME,
FilePath,
PageMetadata,
ImageSize,
ImageInputShape)
from pandera.typing import DataFrame
from typing import Tuple, List
from transformers import TFBertModel
from tf_keras import layers, models
from PIL import Image
# Allow for unlimited image size, some documents are pretty big...
Image.MAX_IMAGE_PIXELS = None
def stratified_split(
df: pd.DataFrame,
train_frac: float,
val_frac: float,
test_frac: float,
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
train_dfs, val_dfs, test_dfs = [], [], []
for label, group in df.groupby('label'):
n = len(group)
train_end = int(n * train_frac)
val_end = train_end + int(n * val_frac)
train_dfs.append(group.iloc[:train_end])
val_dfs.append(group.iloc[train_end:val_end])
test_dfs.append(group.iloc[val_end:])
train_df = pd.concat(train_dfs).reset_index(drop=True)
val_df = pd.concat(val_dfs).reset_index(drop=True)
test_df = pd.concat(test_dfs).reset_index(drop=True)
return train_df, val_df, test_df
def dataset_from_dataframe(df: pd.DataFrame) -> tf.data.Dataset:
return tf.data.Dataset.from_tensor_slices((
df['img_filepath'].values,
df['input_ids'].values,
df['attention_mask'].values,
df['label'].values,
))
def load_image(image_path: FilePath, image_size: ImageSize) -> Image:
img_width, img_height = image_size
# Load image
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.resize(image, [img_width, img_height])
image /= 255.0
return image
def prepare_dataset(
ds: tf.data.Dataset,
image_size: ImageSize,
batch_size=32,
buffer_size=1000
) -> tf.data.Dataset:
def load_image_and_format_tensor_shape(
img_path: FilePath,
input_ids: List[int],
attention_mask: List[int],
label: str
):
image = load_image(img_path, image_size)
return ((image, input_ids, attention_mask), label)
return ds.map(
load_image_and_format_tensor_shape,
num_parallel_calls=tf.data.experimental.AUTOTUNE,
) \
.shuffle(buffer_size=buffer_size) \
.batch(batch_size) \
.prefetch(tf.data.experimental.AUTOTUNE)
def prepare_data(
df: DataFrame[PageMetadata]
) -> Tuple[tf.data.Dataset, tf.data.Dataset, tf.data.Dataset]:
print('Splitting the DataFrame into training, validation and test')
train_df, val_df, test_df = stratified_split(
df,
train_frac=0.7,
val_frac=0.15,
test_frac=0.15,
)
run = wandb.init(project_name=PROJECT_NAME, name='split-dataset')
split_dataset_artifact = wandb.Artifact('split-dataset-metadata', type='dataset')
train_table = wandb.Table(dataframe=train_df)
val_table = wandb.Table(dataframe=val_df)
test_table = wandb.Table(dataframe=test_df)
split_dataset_artifact.add(train_table, name='train_metadata')
split_dataset_artifact.add(val_table, name='val_metadata')
split_dataset_artifact.add(test_table, name='test_metadata')
run.log_artifact(split_dataset_artifact)
run.finish()
print('Batching and shuffling the datasets')
train_ds = dataset_from_dataframe(train_df)
train_ds = prepare_dataset(train_ds, img_size, batch_size=BATCH_SIZE)
val_ds = dataset_from_dataframe(val_df)
val_ds = prepare_dataset(val_ds, img_size, batch_size=BATCH_SIZE)
test_ds = dataset_from_dataframe(test_df)
test_ds = prepare_dataset(test_ds, img_size, batch_size=BATCH_SIZE)
return train_ds, val_ds, test_ds
def build_image_model(input_shape: ImageInputShape) -> keras.Model:
img_model = models.Sequential([
layers.Input(shape=input_shape),
layers.Conv2D(32, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(128, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(128, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(512, activation='relu'),
], name='image_classification')
img_model.summary()
return img_model
def build_text_model() -> keras.Model:
bert_model = TFBertModel.from_pretrained(BERT_BASE)
input_ids = layers.Input(
shape=(MAX_SEQUENCE_LENGHT,), dtype=tf.int32, name='input_ids'
)
attention_mask = layers.Input(
shape=(MAX_SEQUENCE_LENGHT,), dtype=tf.int32, name='attention_mask'
)
# The second element of the BERT output is the pooled output i.e. the
# representation of the [CLS] token
outputs = bert_model(input_ids=input_ids, attention_mask=attention_mask)[1]
text_model = models.Model(
inputs=[input_ids, attention_mask],
outputs=outputs,
name='bert'
)
text_model.summary()
return text_model
def build_multimodal_model(
num_classes: int,
img_input_shape: ImageInputShape
) -> keras.Model:
img_model = build_image_model(img_input_shape)
text_model = build_text_model()
img_input = layers.Input(shape=img_input_shape, name='img_input')
text_input_ids = layers.Input(
shape=(MAX_SEQUENCE_LENGHT,), dtype=tf.int32, name='text_input_ids'
)
text_input_mask = layers.Input(
shape=(MAX_SEQUENCE_LENGHT,), dtype=tf.int32, name='text_input_mask'
)
img_features = img_model(img_input)
text_features = text_model([text_input_ids, text_input_mask])
classification_layers = keras.Sequential([
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(num_classes, activation='softmax'),
], name='classification_layers')
concat_features = layers.concatenate([img_features, text_features],
name='concatenate_features')
outputs = classification_layers(concat_features)
multimodal_model = models.Model(
inputs=[img_input, text_input_ids, text_input_mask],
outputs=outputs,
name='multimodal_document_page_classifier'
)
return multimodal_model
def train():
metadata_df: DataFrame[PageMetadata] = pd.read_csv(METADATA_FILEPATH)
median_height = int(metadata_df['height'].median())
median_width = int(metadata_df['width'].median())
img_size: ImageSize = (median_height, median_width)
img_input_shape: ImageInputShape = img_size + (3,)
label_names: List[str] = sorted(
[d.name for d in PROCESSED_DATA_DIR.iterdir() if d.is_dir()]
)
num_classes = len(label_names)
train_ds, val_ds, test_ds = prepare_data(metadata_df)
multimodal_model = build_multimodal_model(num_classes, img_input_shape)
multimodal_model.summary()
multimodal_model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
multimodal_model.fit(
train_ds,
epochs=EPOCHS,
batch_size=BATCH_SIZE,
validation_data=val_ds,
)
if __name__ = '__main__':
train()
evaluate()
|