File size: 14,591 Bytes
b53c482
 
 
 
 
 
 
 
 
 
2f63f72
12c3d16
 
 
 
 
 
 
 
f318673
 
2f63f72
f318673
2f63f72
 
f318673
2f63f72
 
12c3d16
2f63f72
 
 
 
 
 
 
 
 
12c3d16
2f63f72
12c3d16
 
 
 
 
2f63f72
 
 
 
f318673
2f63f72
12c3d16
2f63f72
f318673
b53c482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c3d16
b53c482
 
 
12c3d16
b53c482
 
 
 
 
12c3d16
b53c482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f63f72
 
 
 
 
 
 
 
 
 
 
b53c482
2f63f72
 
 
 
 
 
 
 
 
 
 
b53c482
22cd05e
 
 
b53c482
2f63f72
b53c482
22cd05e
 
 
 
 
 
 
 
 
 
2f63f72
 
12c3d16
 
22cd05e
 
 
12c3d16
2f63f72
12c3d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f63f72
 
 
12c3d16
2f63f72
 
 
 
 
12c3d16
2f63f72
 
 
 
 
12c3d16
2f63f72
 
 
 
 
 
 
12c3d16
2f63f72
 
22cd05e
 
 
2f63f72
 
f318673
2f63f72
 
22cd05e
b53c482
22cd05e
 
b53c482
22cd05e
 
b53c482
22cd05e
f318673
12c3d16
2f63f72
 
12c3d16
 
2f63f72
 
 
 
12c3d16
 
22cd05e
b53c482
 
 
 
 
f318673
2f63f72
 
b53c482
 
 
 
12c3d16
f318673
 
 
 
2f63f72
 
12c3d16
f318673
b53c482
12c3d16
 
b53c482
 
 
12c3d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b53c482
 
12c3d16
 
 
b53c482
12c3d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b53c482
 
12c3d16
 
 
 
 
 
 
 
b53c482
12c3d16
 
 
 
 
 
b53c482
 
12c3d16
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import os
import torch
import torch.nn.functional as F
from sentence_transformers import SentenceTransformer
import pickle
import gradio as gr
import gdown
import requests
from tqdm import tqdm
import time
import re
import traceback
import logging

# Configure logging
logging.basicConfig(level=logging.INFO, 
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
                    handlers=[logging.StreamHandler()])
logger = logging.getLogger("SportsChatbot")

def initialize_llm():
    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    model_id = "deepseek-ai/deepseek-coder-1.3b-instruct"
    model_dir = "models/deepseek-coder-1.3b-instruct"
    
    if not os.path.exists(model_dir):
        os.makedirs(model_dir, exist_ok=True)
        logger.info(f"Downloading DeepSeek Coder model to {model_dir}...")
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            torch_dtype=torch.float32,  # Use float32 for CPU
            low_cpu_mem_usage=True,
        )
        model.save_pretrained(model_dir)
        tokenizer.save_pretrained(model_dir)
    
    # Fix for attention mask and pad token warnings
    tokenizer = AutoTokenizer.from_pretrained(model_dir)
    # Explicitly set pad_token_id if it's not set
    if tokenizer.pad_token_id is None:
        logger.info("Setting pad_token_id to eos_token_id")
        tokenizer.pad_token_id = tokenizer.eos_token_id
    
    model = AutoModelForCausalLM.from_pretrained(
        model_dir,
        torch_dtype=torch.float32,
        low_cpu_mem_usage=True
    )
    
    logger.info(f"Model loaded successfully from {model_dir}")
    return model, tokenizer

def download_file_with_progress(url: str, filename: str):
    """Download a file with progress bar using requests"""
    response = requests.get(url, stream=True)
    total_size = int(response.headers.get('content-length', 0))
    
    with open(filename, 'wb') as file, tqdm(
        desc=filename,
        total=total_size,
        unit='iB',
        unit_scale=True,
        unit_divisor=1024,
    ) as progress_bar:
        for data in response.iter_content(chunk_size=1024):
            size = file.write(data)
            progress_bar.update(size)

class SentenceTransformerRetriever:
    def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2", cache_dir: str = "embeddings_cache"):
        self.device = torch.device("cpu")
        self.model = SentenceTransformer(model_name, device=str(self.device))
        self.doc_embeddings = None
        self.cache_dir = cache_dir
        os.makedirs(cache_dir, exist_ok=True)
        
    def load_specific_cache(self, cache_filename: str, drive_link: str) -> dict:
        cache_path = os.path.join(self.cache_dir, cache_filename)
        
        if not os.path.exists(cache_path):
            logger.info(f"Cache file not found. Downloading from Google Drive...")
            try:
                gdown.download(drive_link, cache_path, quiet=False)
            except Exception as e:
                logger.error(f"Failed to download cache file: {str(e)}")
                raise Exception(f"Failed to download cache file: {str(e)}")
            
            if not os.path.exists(cache_path):
                raise FileNotFoundError(f"Failed to download cache file to {cache_path}")
        
        logger.info(f"Loading cache from: {cache_path}")
        with open(cache_path, 'rb') as f:
            return pickle.load(f)

    def encode(self, texts: list) -> torch.Tensor:
        embeddings = self.model.encode(texts, convert_to_tensor=True, show_progress_bar=True)
        return F.normalize(embeddings, p=2, dim=1)

    def store_embeddings(self, embeddings: torch.Tensor):
        self.doc_embeddings = embeddings

    def search(self, query_embedding: torch.Tensor, k: int):
        if self.doc_embeddings is None:
            raise ValueError("No document embeddings stored!")

        similarities = F.cosine_similarity(query_embedding, self.doc_embeddings)
        scores, indices = torch.topk(similarities, k=min(k, similarities.shape[0]))
        
        return indices.cpu(), scores.cpu()

class TextProcessor:
    @staticmethod
    def extract_relevant_info(documents, query):
        """Extract only the most relevant parts from documents based on the query"""
        # Simple keyword-based extraction
        query_tokens = set(re.findall(r'\b\w+\b', query.lower()))
        relevant_parts = []
        
        for doc in documents:
            # Split document into sentences
            sentences = re.split(r'(?<=[.!?])\s+', doc)
            
            for sentence in sentences:
                # Count matching keywords
                sentence_tokens = set(re.findall(r'\b\w+\b', sentence.lower()))
                overlap = len(query_tokens.intersection(sentence_tokens))
                
                # Keep sentences with sufficient keyword overlap or short enough to be important
                if overlap > 0 or len(sentence) < 100:
                    relevant_parts.append(sentence)
        
        # Join the relevant parts
        result = " ".join(relevant_parts)
        
        # If result is too long, truncate more aggressively
        if len(result) > 1000:  # Reduced from 2000 to 1000
            result = result[-1000:]
            
        return result

def truncate_to_token_limit(text, tokenizer, max_tokens=500):
    """Truncate text to fit within token limit"""
    tokens = tokenizer.encode(text)
    if len(tokens) <= max_tokens:
        return text
    
    # Truncate tokens and decode back to text
    truncated_tokens = tokens[-max_tokens:]
    return tokenizer.decode(truncated_tokens)

def generate_response(model, tokenizer, prompt):
    """Generate a response using the DeepSeek model"""
    logger.info("Tokenizing input prompt")
    inputs = tokenizer(prompt, return_tensors="pt", padding=True)  # Add padding=True to ensure attention_mask is set
    input_length = inputs["input_ids"].shape[1]
    
    # Print prompt length for debugging
    logger.info(f"Prompt length: {input_length} tokens")
    
    logger.info("Starting model generation")
    try:
        with torch.no_grad():
            output = model.generate(
                inputs["input_ids"],
                attention_mask=inputs["attention_mask"],  # Pass attention_mask
                max_new_tokens=256,  # Generate up to 256 new tokens
                temperature=0.1,
                top_p=0.1,
                top_k=10,
                repetition_penalty=1.1,
                do_sample=True,
                num_return_sequences=1,
                pad_token_id=tokenizer.pad_token_id,  # Set pad_token_id explicitly
            )
        
        logger.info("Model generation completed successfully")
        response = tokenizer.decode(output[0], skip_special_tokens=True)
        # Extract just the response part (after the prompt)
        generation = response[len(tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)):].strip()
        logger.info(f"Generated response length: {len(generation)} characters")
        return generation
    except Exception as e:
        logger.error(f"Error during generation: {str(e)}")
        logger.error(traceback.format_exc())
        return f"Error during text generation: {str(e)}"

def process_query(query: str, cache_data: dict, model, tokenizer) -> str:
    try:
        logger.info(f"Processing query: {query}")
        retriever = SentenceTransformerRetriever()
        retriever.store_embeddings(cache_data['embeddings'])
        documents = cache_data['documents']
        
        # Get relevant document indices
        logger.info("Encoding query and searching for relevant documents")
        query_embedding = retriever.encode([query])
        indices, scores = retriever.search(query_embedding, k=5)
        
        # Get only documents with score above threshold
        selected_indices = [idx for idx, score in zip(indices.tolist(), scores.tolist()) if score > 0.3]
        logger.info(f"Found {len(selected_indices)} relevant documents with score > 0.3")
        
        if not selected_indices:
            return "I don't have enough information to answer that question accurately."
        
        relevant_docs = [documents[idx] for idx in selected_indices]
        
        # Extract only the most relevant information from documents
        logger.info("Extracting relevant information from documents")
        extracted_text = TextProcessor.extract_relevant_info(relevant_docs, query)
        
        # Ensure we don't exceed token limits
        extracted_text = truncate_to_token_limit(extracted_text, tokenizer, max_tokens=500)
        
        if not extracted_text:
            return "I couldn't find relevant information to answer your question."
            
        # Format prompt for DeepSeek model
        prompt = f"""<问题>
Use the following information to answer the sports question. Only use facts mentioned in the given information.

Information:
{extracted_text}

Question: {query}
</问题>

<回答>"""

        logger.info("Generating response")
        start_time = time.time()
        response = generate_response(model, tokenizer, prompt)
        elapsed_time = time.time() - start_time
        logger.info(f'Inference Time: {elapsed_time:.2f} seconds')
        
        return response
    
    except Exception as e:
        logger.error(f"Error processing query: {str(e)}")
        logger.error(traceback.format_exc())
        return f"I encountered an error while processing your question: {str(e)}"

class SportsChatbot:
    def __init__(self):
        self.cache_filename = "embeddings_2296.pkl"
        self.cache_drive_link = "https://drive.google.com/uc?id=1LuJdnwe99C0EgvJpyfHYCKzUvj94FWlC"
        self.cache_data = None
        self.model = None
        self.tokenizer = None
        self.initialize_pipeline()

    def initialize_pipeline(self):
        try:
            logger.info("Initializing SportsChatbot pipeline")
            # Initialize retriever and load cache
            retriever = SentenceTransformerRetriever()
            self.cache_data = retriever.load_specific_cache(self.cache_filename, self.cache_drive_link)
            
            # Initialize DeepSeek model
            self.model, self.tokenizer = initialize_llm()
            logger.info("SportsChatbot pipeline initialized successfully")
            
        except Exception as e:
            logger.error(f"Error initializing the application: {str(e)}")
            logger.error(traceback.format_exc())
            raise Exception(f"Error initializing the application: {str(e)}")

    def process_question(self, question: str, progress=gr.Progress()):
        try:
            if not question.strip():
                return "Please enter a question!"
            
            logger.info(f"Received question: {question}")
            progress(0.1, desc="Processing query...")
            
            # Add intermediate progress steps for better feedback
            progress(0.3, desc="Searching knowledge base...")
            progress(0.5, desc="Analyzing relevant information...")
            response = process_query(question, self.cache_data, self.model, self.tokenizer)
            progress(0.9, desc="Finalizing response...")
            
            logger.info("Response generated successfully")
            return response
        except Exception as e:
            logger.error(f"Error in process_question: {str(e)}")
            logger.error(traceback.format_exc())
            return f"Sorry, an error occurred: {str(e)}"

def create_demo():
    try:
        logger.info("Creating Gradio demo")
        chatbot = SportsChatbot()
        
        with gr.Blocks(title="The Sport Chatbot") as demo:
            gr.Markdown("# The Sport Chatbot")
            gr.Markdown("### Using ESPN API")
            gr.Markdown("Hey there! 👋 I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball. With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.")
            gr.Markdown("Got any general questions? Feel free to ask—I'll do my best to provide answers based on the information I've been trained on!")
            
            with gr.Row():
                question_input = gr.Textbox(
                    label="Enter your question:",
                    placeholder="Type your sports-related question here...",
                    lines=2
                )
            
            with gr.Row():
                submit_btn = gr.Button("Get Answer", variant="primary")
            
            # Add a debug output area
            with gr.Row():
                debug_output = gr.Markdown(label="Debug Info", visible=True)
            
            with gr.Row():
                answer_output = gr.Markdown(label="Answer")
                
            # Define a debug function to test button clicks
            def update_debug_info(question):
                logger.info(f"Button clicked with question: {question}")
                return f"Processing question: '{question}' at {time.strftime('%H:%M:%S')}"
            
            # Connect the debug function to show activity
            submit_btn.click(
                fn=update_debug_info,
                inputs=question_input,
                outputs=debug_output,
            ).then(
                fn=chatbot.process_question,
                inputs=question_input,
                outputs=answer_output,
                api_name="answer_question"
            )
            
            gr.Examples(
                examples=[
                    "Who won the NBA championship in 2023?",
                    "What are the basic rules of ice hockey?",
                    "Tell me about the NFL playoffs format.",
                ],
                inputs=question_input,
            )

        logger.info("Gradio demo created successfully")
        return demo
    except Exception as e:
        logger.error(f"Error creating demo: {str(e)}")
        logger.error(traceback.format_exc())
        raise

if __name__ == "__main__":
    try:
        logger.info("Starting Sports Chatbot application")
        demo = create_demo()
        logger.info("Launching Gradio interface")
        demo.launch()
    except Exception as e:
        logger.error(f"Application startup failed: {str(e)}")
        logger.error(traceback.format_exc())