sipariseng / app.py
bgk's picture
Update app.py
10a0a8c
raw
history blame
1.49 kB
import gradio as gr
from simpletransformers.ner import NERModel
import string
labels = ["O", "B-FOOD_QUANTITY", "B-FOOD_SIZE", "B-FOOD", "I-FOOD", "B-FOOD_INGREDIENTS", "I-FOOD_INGREDIENTS", "B-DRINK_SIZE", "B-DRINK_QUANTITY", "B-DRINK", "B-PAYMENT", "I-PAYMENT", "B-DELIVERY_ADDRESS", "I-DRINK_SIZE", "I-DRINK", "I-FOOD_SIZE", "I-ING", "I-DELIVERY_ADDRESS"]
model = NERModel(
"roberta",
"bgk/berteng", labels=labels,
use_cuda=False,
ignore_mismatched_sizes=True
)
examples=[['I want two hamburgers and one sprite and one milkshake send it to my workplace' ], [' I want to order two large pizzas, two medium coke, send it to my home, I will pay with cash' ]]
def ner(text):
trans_table = text.maketrans('', '', string.punctuation)
text = text.translate(trans_table)
text=text.lower()
prediction, model_output = model.predict([text])
entities = prediction
filtered_output = (({v: k} for d in sublist for k, v in d.items() if (v.startswith("B-") or v.startswith("I-"))) for sublist in prediction)
entities = []
for sublist in filtered_output:
for d in sublist:
for k, v in d.items():
label = k.split("-")[1]
entities.extend([(label, v)])
return entities # prediction
demo = gr.Interface(ner,
gr.Textbox(placeholder="Enter sentence here..."),
gr.HighlightedText(),
examples=examples)
demo.launch()