qew / app.py
beyoru's picture
Update app.py
854ef87 verified
raw
history blame
3.83 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load Inference Client for the response model
client = InferenceClient("Qwen/Qwen2.5-3B-Instruct")
# Load tokenizer and model for the EOU detection
tokenizer = AutoTokenizer.from_pretrained("livekit/turn-detector")
model = AutoModelForCausalLM.from_pretrained("livekit/turn-detector")
# Function to compute EOU probability
def compute_eou_probability(chat_ctx: list[dict[str, str]], max_tokens: int = 512) -> float:
# Extract only the 'content' from the chat context (messages) and use a list of strings for tokenization
conversation = ["Assistant ready to help."] # Add system message directly as a string
# Only append the 'content' of each message to the conversation list
for msg in chat_ctx:
content = msg.get("content", "")
if content:
conversation.append(content) # Only append the content (string)
# Tokenize the conversation content (just the text) as a list of strings
inputs = tokenizer(
conversation, padding=True, truncation=True, max_length=max_tokens, return_tensors="pt"
)
# Get model logits
with torch.no_grad():
outputs = model(**inputs)
# Get the logits for the last token in the sequence
logits = outputs.logits[0, -1, :]
# Apply softmax to get probabilities
probabilities = torch.nn.functional.softmax(logits, dim=-1)
# Get the EOU token index (typically "<|im_end|>" token in the model)
eou_token_id = tokenizer.encode("<|im_end|>")[0]
eou_probability = probabilities[eou_token_id].item()
return eou_probability
# Respond function with EOU checking logic
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
eou_threshold: float = 0.2, # Default EOU threshold
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Compute EOU probability before responding
eou_probability = compute_eou_probability(messages, max_tokens=max_tokens)
print(eou_probability)
# Only respond if EOU probability exceeds threshold
if eou_probability >= eou_threshold:
# Prepare message for assistant response
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
else:
# Let the user continue typing if the EOU probability is low
yield "Waiting for user to finish... Please continue."
print("Waiting for user to finish... Please continue.")
# Gradio UI
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="Bạn là một trợ lý ảo", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Slider(
minimum=0.0, maximum=1.0, value=0.7, step=0.05, label="EOU Threshold"
), # Add EOU threshold slider
],
)
if __name__ == "__main__":
demo.launch()