Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,37 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
import string
|
4 |
-
import numpy as np
|
5 |
from transformers import AutoTokenizer
|
6 |
import onnxruntime as ort
|
|
|
|
|
|
|
7 |
import os
|
8 |
|
9 |
-
# Initialize client and models
|
10 |
client = InferenceClient(api_key=os.environ.get('HF_TOKEN'))
|
11 |
|
12 |
-
#
|
13 |
-
PUNCS = string.punctuation.replace("'", "")
|
14 |
-
MAX_HISTORY = 4
|
15 |
-
MAX_HISTORY_TOKENS = 1024
|
16 |
-
EOU_THRESHOLD = 0.5
|
17 |
-
|
18 |
-
# Initialize tokenizer and ONNX session
|
19 |
HG_MODEL = "livekit/turn-detector"
|
20 |
ONNX_FILENAME = "model_quantized.onnx"
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
tokenizer = AutoTokenizer.from_pretrained(HG_MODEL)
|
22 |
onnx_session = ort.InferenceSession(ONNX_FILENAME, providers=["CPUExecutionProvider"])
|
23 |
|
24 |
-
#
|
25 |
def softmax(logits):
|
26 |
exp_logits = np.exp(logits - np.max(logits))
|
27 |
return exp_logits / np.sum(exp_logits)
|
28 |
|
|
|
29 |
def normalize_text(text):
|
30 |
def strip_puncs(text):
|
31 |
return text.translate(str.maketrans("", "", PUNCS))
|
32 |
return " ".join(strip_puncs(text).lower().split())
|
33 |
|
|
|
34 |
def format_chat_ctx(chat_ctx):
|
35 |
new_chat_ctx = []
|
36 |
for msg in chat_ctx:
|
@@ -39,14 +40,19 @@ def format_chat_ctx(chat_ctx):
|
|
39 |
if content:
|
40 |
msg["content"] = content
|
41 |
new_chat_ctx.append(msg)
|
|
|
|
|
42 |
convo_text = tokenizer.apply_chat_template(
|
43 |
new_chat_ctx, add_generation_prompt=False, add_special_tokens=False, tokenize=False
|
44 |
)
|
|
|
|
|
45 |
ix = convo_text.rfind("<|im_end|>")
|
46 |
return convo_text[:ix]
|
47 |
|
|
|
48 |
def calculate_eou(chat_ctx, session):
|
49 |
-
formatted_text = format_chat_ctx(chat_ctx[-MAX_HISTORY:])
|
50 |
inputs = tokenizer(
|
51 |
formatted_text,
|
52 |
return_tensors="np",
|
@@ -61,35 +67,42 @@ def calculate_eou(chat_ctx, session):
|
|
61 |
return probs[eou_token_id]
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
# Exit condition
|
72 |
-
if user_input.lower() == "exit":
|
73 |
-
messages = [] # Reset conversation history
|
74 |
-
return "Chat ended. Refresh the page to start again."
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
messages.append({"role": "user", "content": user_input})
|
79 |
|
80 |
-
# Calculate EOU
|
81 |
eou_prob = calculate_eou(messages, onnx_session)
|
|
|
|
|
|
|
82 |
if eou_prob < EOU_THRESHOLD:
|
83 |
-
yield "[
|
84 |
return
|
85 |
|
86 |
-
|
87 |
stream = client.chat.completions.create(
|
88 |
-
model=
|
89 |
messages=messages,
|
90 |
-
temperature=0.6,
|
91 |
-
max_tokens=
|
92 |
-
top_p=0.
|
93 |
stream=True
|
94 |
)
|
95 |
|
@@ -97,23 +110,23 @@ def chatbot(user_input):
|
|
97 |
for chunk in stream:
|
98 |
bot_response += chunk.choices[0].delta.content
|
99 |
yield bot_response
|
|
|
100 |
|
101 |
-
# Add final bot response to conversation history
|
102 |
-
messages.append({"role": "assistant", "content": bot_response})
|
103 |
-
|
104 |
-
# Create Gradio interface
|
105 |
-
with gr.Blocks(theme='darkdefault') as demo:
|
106 |
-
gr.Markdown("""# Chat with DeepSeek""")
|
107 |
-
|
108 |
-
with gr.Row():
|
109 |
-
with gr.Column():
|
110 |
-
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...")
|
111 |
-
submit_button = gr.Button("Send")
|
112 |
-
with gr.Column():
|
113 |
-
chat_output = gr.Textbox(label="Chatbot Response", interactive=False)
|
114 |
-
|
115 |
-
# Define interactions
|
116 |
-
submit_button.click(chatbot, inputs=[user_input], outputs=[chat_output])
|
117 |
|
118 |
-
#
|
119 |
-
demo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
from transformers import AutoTokenizer
|
3 |
import onnxruntime as ort
|
4 |
+
import numpy as np
|
5 |
+
import string
|
6 |
+
from huggingface_hub import InferenceClient
|
7 |
import os
|
8 |
|
|
|
9 |
client = InferenceClient(api_key=os.environ.get('HF_TOKEN'))
|
10 |
|
11 |
+
# Model and ONNX setup
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
HG_MODEL = "livekit/turn-detector"
|
13 |
ONNX_FILENAME = "model_quantized.onnx"
|
14 |
+
PUNCS = string.punctuation.replace("'", "")
|
15 |
+
MAX_HISTORY = 4 # Adjusted to use the last 4 messages
|
16 |
+
MAX_HISTORY_TOKENS = 512
|
17 |
+
EOU_THRESHOLD = 0.5 # Updated threshold to match original
|
18 |
+
|
19 |
+
# Initialize ONNX model
|
20 |
tokenizer = AutoTokenizer.from_pretrained(HG_MODEL)
|
21 |
onnx_session = ort.InferenceSession(ONNX_FILENAME, providers=["CPUExecutionProvider"])
|
22 |
|
23 |
+
# Softmax function
|
24 |
def softmax(logits):
|
25 |
exp_logits = np.exp(logits - np.max(logits))
|
26 |
return exp_logits / np.sum(exp_logits)
|
27 |
|
28 |
+
# Normalize text
|
29 |
def normalize_text(text):
|
30 |
def strip_puncs(text):
|
31 |
return text.translate(str.maketrans("", "", PUNCS))
|
32 |
return " ".join(strip_puncs(text).lower().split())
|
33 |
|
34 |
+
# Format chat context
|
35 |
def format_chat_ctx(chat_ctx):
|
36 |
new_chat_ctx = []
|
37 |
for msg in chat_ctx:
|
|
|
40 |
if content:
|
41 |
msg["content"] = content
|
42 |
new_chat_ctx.append(msg)
|
43 |
+
|
44 |
+
# Tokenize with chat template
|
45 |
convo_text = tokenizer.apply_chat_template(
|
46 |
new_chat_ctx, add_generation_prompt=False, add_special_tokens=False, tokenize=False
|
47 |
)
|
48 |
+
|
49 |
+
# Remove EOU token from the current utterance
|
50 |
ix = convo_text.rfind("<|im_end|>")
|
51 |
return convo_text[:ix]
|
52 |
|
53 |
+
# Calculate EOU probability
|
54 |
def calculate_eou(chat_ctx, session):
|
55 |
+
formatted_text = format_chat_ctx(chat_ctx[-MAX_HISTORY:]) # Use the last 4 messages
|
56 |
inputs = tokenizer(
|
57 |
formatted_text,
|
58 |
return_tensors="np",
|
|
|
67 |
return probs[eou_token_id]
|
68 |
|
69 |
|
70 |
+
# Respond function
|
71 |
+
def respond(
|
72 |
+
message,
|
73 |
+
history: list[tuple[str, str]],
|
74 |
+
max_tokens,
|
75 |
+
temperature,
|
76 |
+
top_p,
|
77 |
+
):
|
78 |
+
# Keep the last 4 conversation pairs (user-assistant)
|
79 |
+
messages = [{"role": "system", "content": os.environ.get("CHARACTER_DESC")}]
|
80 |
|
81 |
+
for val in history[-20:]:
|
82 |
+
if val[0]:
|
83 |
+
messages.append({"role": "user", "content": val[0]})
|
84 |
+
if val[1]:
|
85 |
+
messages.append({"role": "assistant", "content": val[1]})
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# Add the new user message to the context
|
88 |
+
messages.append({"role": "user", "content": message})
|
|
|
89 |
|
90 |
+
# Calculate EOU probability
|
91 |
eou_prob = calculate_eou(messages, onnx_session)
|
92 |
+
print(f"EOU Probability: {eou_prob}") # Debug output
|
93 |
+
|
94 |
+
# If EOU is below the threshold, ask for more input
|
95 |
if eou_prob < EOU_THRESHOLD:
|
96 |
+
yield "[Waiting for user to continue input...]"
|
97 |
return
|
98 |
|
99 |
+
|
100 |
stream = client.chat.completions.create(
|
101 |
+
model=os.environ.get('MODEL_ID'),
|
102 |
messages=messages,
|
103 |
+
temperature = 0.6,
|
104 |
+
max_tokens= 2048,
|
105 |
+
top_p = 0.9,
|
106 |
stream=True
|
107 |
)
|
108 |
|
|
|
110 |
for chunk in stream:
|
111 |
bot_response += chunk.choices[0].delta.content
|
112 |
yield bot_response
|
113 |
+
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
# Gradio interface
|
117 |
+
demo = gr.ChatInterface(
|
118 |
+
respond,
|
119 |
+
# additional_inputs=[
|
120 |
+
# # Commented out to disable user modification of the system message
|
121 |
+
# # gr.Textbox(value="You are an assistant.", label="System message"),
|
122 |
+
# gr.Slider(minimum=1, maximum=4096, value=256, step=1, label="Max new tokens"),
|
123 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
124 |
+
# gr.Slider(
|
125 |
+
# minimum=0.1,
|
126 |
+
# maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
|
127 |
+
# ),
|
128 |
+
# ],
|
129 |
+
)
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
demo.launch()
|