Func_calling / app.py
beyoru's picture
Update app.py
31391ab verified
raw
history blame
4.35 kB
import re
import torch
from threading import Thread
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
CONTEXT_LENGTH = 4096
# Add special tokens for thinking process
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
tokenizer.add_special_tokens({
"additional_special_tokens": ["<think>", "</think>"]
})
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
model.resize_token_embeddings(len(tokenizer))
def predict(message, history, show_thinking, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
stop_tokens = ["<|endoftext|>", "<|im_end|>", "|im_end|", "</think>"]
instruction = f'<|im_start|>system\n{system_prompt}\n<|im_end|>\n'
# Format chat history
for user, assistant in history:
instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n'
instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
enc = tokenizer(instruction, return_tensors="pt", truncation=True, max_length=CONTEXT_LENGTH)
input_ids, attention_mask = enc.input_ids, enc.attention_mask
generate_kwargs = dict(
input_ids=input_ids,
attention_mask=attention_mask,
streamer=streamer,
do_sample=True,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_k=top_k,
repetition_penalty=repetition_penalty,
top_p=top_p
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
thinking_buffer = []
in_thinking = False
current_chunk = ""
for new_token in streamer:
current_chunk += new_token
# Check for thinking tags
if "<think>" in current_chunk and not in_thinking:
in_thinking = True
pre, _, post = current_chunk.partition("<think>")
if pre:
outputs.append(pre)
yield _clean_output("".join(outputs), show_thinking)
current_chunk = post
if "</think>" in current_chunk and in_thinking:
in_thinking = False
pre, _, post = current_chunk.partition("</think>")
thinking_buffer.append(pre)
if show_thinking:
outputs.extend(thinking_buffer)
thinking_buffer = []
current_chunk = post
if in_thinking:
thinking_buffer.append(current_chunk)
if show_thinking:
outputs.append(current_chunk)
yield _clean_output("".join(outputs), show_thinking)
current_chunk = ""
else:
if current_chunk:
outputs.append(current_chunk)
yield _clean_output("".join(outputs), show_thinking)
current_chunk = ""
def _clean_output(text: str, show_thinking: bool) -> str:
# Remove residual tags and format thinking content
text = re.sub(r'\s*<think>\s*', '\n\n*Thinking:* ', text)
text = re.sub(r'\s*</think>\s*', ' ', text)
text = re.sub(r'(\*Thinking:\*)(?! )', r'\1 ', text)
return text.strip()
# Create interface with toggle
gr.ChatInterface(
predict,
additional_inputs=[
gr.Checkbox(value=True, label="๐Ÿ” Show Thinking Process"),
gr.Textbox(
"You are an AI assistant. First analyze requests using <think> tags, then provide answers. "
"Put all reasoning between <think> and </think> tags.",
label="System Prompt"
),
gr.Slider(0, 1, 0.6, label="๐ŸŒก๏ธ Temperature"),
gr.Slider(0, 4096, 512, label="๐Ÿ“ Max New Tokens"),
gr.Slider(1, 80, 40, label="๐ŸŽ›๏ธ Top K"),
gr.Slider(0.1, 2.0, 1.1, label="๐Ÿ”„ Repetition Penalty"),
gr.Slider(0, 1, 0.95, label="๐Ÿงฎ Top P"),
],
css="""
.thinking {
color: #666;
font-style: italic;
border-left: 3px solid #ddd;
padding-left: 1em;
margin: 0.5em 0;
}
""",
title="DeepSeek AI Assistant with Reasoning",
description="Toggle the 'Show Thinking Process' checkbox to view/hide the model's internal reasoning"
).queue().launch()