Spaces:
Sleeping
Sleeping
Commit
·
d9187f0
1
Parent(s):
7b4a17b
Changed subparts to functions
Browse files
app.py
CHANGED
@@ -21,13 +21,6 @@ def search(query, similarity="false"):
|
|
21 |
|
22 |
start_time = time.time()
|
23 |
|
24 |
-
# Set the API endpoint and query parameters
|
25 |
-
url = "https://www.googleapis.com/books/v1/volumes"
|
26 |
-
params = {"q": str(query), "printType": "books", "maxResults": 10}
|
27 |
-
|
28 |
-
# Send a GET request to the API with the specified parameters
|
29 |
-
response = requests.get(url, params=params)
|
30 |
-
|
31 |
# Initialize the lists to store the results
|
32 |
titles = []
|
33 |
authors = []
|
@@ -35,251 +28,332 @@ def search(query, similarity="false"):
|
|
35 |
descriptions = []
|
36 |
images = []
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
images.append(
|
67 |
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
68 |
)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
)
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
{
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
# Create a dict to store the key-value pairs
|
138 |
-
parsed_result = {}
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
else:
|
145 |
-
parsed_result[key] = result.split(f"{key}: ")[1]
|
146 |
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
)
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
AutoModelForSeq2SeqLM,
|
173 |
-
AutoModelForSequenceClassification,
|
174 |
-
pipeline,
|
175 |
-
)
|
176 |
-
from sentence_transformers import SentenceTransformer
|
177 |
-
|
178 |
-
# Load the classifiers
|
179 |
-
# classifier = TextClassifier.load(
|
180 |
-
# "trainers/deberta-v3-base-tasksource-nli/best-model.pt"
|
181 |
-
# )
|
182 |
-
# sentence_transformer = SentenceTransformer("all-MiniLM-L12-v2")
|
183 |
-
# cross_encoder = CrossEncoder("cross-encoder/stsb-distilroberta-base")
|
184 |
-
|
185 |
-
# Combine title, description, and publisher into a single string
|
186 |
-
combined_data = [
|
187 |
-
f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
|
188 |
-
for title, description, publisher in zip(titles, descriptions, publishers)
|
189 |
-
]
|
190 |
-
|
191 |
-
# Prepare the Sentence object
|
192 |
-
# sentences = [
|
193 |
-
# Sentence(doc, use_tokenizer=SegtokTokenizer()) for doc in combined_data
|
194 |
-
# ]
|
195 |
-
|
196 |
-
# Classify the sentences
|
197 |
-
# classifier.predict(sentences)
|
198 |
-
|
199 |
-
# Get the predicted labels
|
200 |
-
# classes = [sentence.labels for sentence in sentences]
|
201 |
-
|
202 |
-
# Define the summarizer model and tokenizer
|
203 |
-
sum_tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-xsum-12-6")
|
204 |
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
-
|
209 |
-
"summarization",
|
210 |
-
model=sum_model,
|
211 |
-
tokenizer=sum_tokenizer,
|
212 |
-
batch_size=64,
|
213 |
-
)
|
214 |
-
|
215 |
-
# Define the zero-shot classifier
|
216 |
-
zs_tokenizer = AutoTokenizer.from_pretrained(
|
217 |
-
"sileod/deberta-v3-base-tasksource-nli"
|
218 |
-
)
|
219 |
-
# Quickfix for the tokenizer
|
220 |
-
# zs_tokenizer.model_input_names = ["input_ids", "attention_mask"]
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
zs_classifier = pipeline(
|
226 |
-
"zero-shot-classification",
|
227 |
-
model=zs_model,
|
228 |
-
tokenizer=zs_tokenizer,
|
229 |
-
batch_size=64,
|
230 |
-
hypothesis_template="This book is {}.",
|
231 |
-
multi_label=True,
|
232 |
)
|
233 |
|
234 |
-
#
|
235 |
-
|
236 |
-
|
237 |
-
if (description != None)
|
238 |
-
else [{"summary_text": "Null"}]
|
239 |
-
for description in descriptions
|
240 |
-
]
|
241 |
-
|
242 |
-
# Predict the level of the book
|
243 |
-
candidate_labels = [
|
244 |
-
"Introductory",
|
245 |
-
"Advanced",
|
246 |
-
"Academic",
|
247 |
-
"Not Academic",
|
248 |
-
"Manual",
|
249 |
-
]
|
250 |
-
|
251 |
-
# Get the predicted labels
|
252 |
-
classes = [zs_classifier(doc, candidate_labels) for doc in combined_data]
|
253 |
|
254 |
# Calculate the elapsed time
|
255 |
end_time = time.time()
|
256 |
runtime = f"{end_time - start_time:.2f} seconds"
|
257 |
|
258 |
-
# Calculate the similarity between the books
|
259 |
-
if similarity != "false":
|
260 |
-
from sentence_transformers import util
|
261 |
-
|
262 |
-
sentence_transformer = SentenceTransformer("all-MiniLM-L6-v2")
|
263 |
-
book_embeddings = sentence_transformer.encode(
|
264 |
-
combined_data, convert_to_tensor=True
|
265 |
-
)
|
266 |
-
|
267 |
-
similar_books = []
|
268 |
-
for i in range(len(titles)):
|
269 |
-
current_embedding = book_embeddings[i]
|
270 |
-
|
271 |
-
similarity_sorted = util.semantic_search(
|
272 |
-
current_embedding, book_embeddings, top_k=20
|
273 |
-
)
|
274 |
-
|
275 |
-
similar_books.append(
|
276 |
-
{
|
277 |
-
"sorted_by_similarity": similarity_sorted[0][1:],
|
278 |
-
}
|
279 |
-
)
|
280 |
-
else:
|
281 |
-
similar_books = [{"sorted_by_similarity": []} for i in range(len(titles))]
|
282 |
-
|
283 |
# Create a list of dictionaries to store the results
|
284 |
results = [
|
285 |
{
|
@@ -292,6 +366,12 @@ def search(query, similarity="false"):
|
|
292 |
"label_confidences": classes[i]["scores"][0:2],
|
293 |
"summary": summaries[i][0]["summary_text"],
|
294 |
"similar_books": similar_books[i]["sorted_by_similarity"],
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
"runtime": runtime,
|
296 |
}
|
297 |
for i in range(len(titles))
|
|
|
21 |
|
22 |
start_time = time.time()
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Initialize the lists to store the results
|
25 |
titles = []
|
26 |
authors = []
|
|
|
28 |
descriptions = []
|
29 |
images = []
|
30 |
|
31 |
+
def gbooks_search(query, n_results=30):
|
32 |
+
"""
|
33 |
+
Access the Google Books API and return the results.
|
34 |
+
"""
|
35 |
+
# Set the API endpoint and query parameters
|
36 |
+
url = "https://www.googleapis.com/books/v1/volumes"
|
37 |
+
params = {"q": str(query), "printType": "books", "maxResults": n_results}
|
38 |
+
|
39 |
+
# Send a GET request to the API with the specified parameters
|
40 |
+
response = requests.get(url, params=params)
|
41 |
+
|
42 |
+
# Parse the response JSON and append the results
|
43 |
+
data = response.json()
|
44 |
+
|
45 |
+
for item in data["items"]:
|
46 |
+
volume_info = item["volumeInfo"]
|
47 |
+
try:
|
48 |
+
titles.append(f"{volume_info['title']}: {volume_info['subtitle']}")
|
49 |
+
except KeyError:
|
50 |
+
titles.append(volume_info["title"])
|
51 |
+
|
52 |
+
try:
|
53 |
+
descriptions.append(volume_info["description"])
|
54 |
+
except KeyError:
|
55 |
+
descriptions.append("Null")
|
56 |
+
|
57 |
+
try:
|
58 |
+
publishers.append(volume_info["publisher"])
|
59 |
+
except KeyError:
|
60 |
+
publishers.append("Null")
|
61 |
+
|
62 |
+
try:
|
63 |
+
authors.append(volume_info["authors"][0])
|
64 |
+
except KeyError:
|
65 |
+
authors.append("Null")
|
66 |
+
|
67 |
+
try:
|
68 |
+
images.append(volume_info["imageLinks"]["thumbnail"])
|
69 |
+
except KeyError:
|
70 |
+
images.append(
|
71 |
+
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
72 |
+
)
|
73 |
+
|
74 |
+
return titles, authors, publishers, descriptions, images
|
75 |
+
|
76 |
+
# Run the gbooks_search function
|
77 |
+
(
|
78 |
+
titles_placeholder,
|
79 |
+
authors_placeholder,
|
80 |
+
publishers_placeholder,
|
81 |
+
descriptions_placeholder,
|
82 |
+
images_placeholder,
|
83 |
+
) = gbooks_search(query)
|
84 |
+
|
85 |
+
# Append the results to the lists
|
86 |
+
titles.extend(titles_placeholder)
|
87 |
+
authors.extend(authors_placeholder)
|
88 |
+
publishers.extend(publishers_placeholder)
|
89 |
+
descriptions.extend(descriptions_placeholder)
|
90 |
+
images.extend(images_placeholder)
|
91 |
+
|
92 |
+
# Get the time since the start
|
93 |
+
first_checkpoint = time.time()
|
94 |
+
first_checkpoint_time = int(first_checkpoint - start_time)
|
95 |
+
|
96 |
+
def openalex_search(query, n_results=10):
|
97 |
+
"""
|
98 |
+
Run a search on OpenAlex and return the results.
|
99 |
+
"""
|
100 |
+
import pyalex
|
101 |
+
from pyalex import Works
|
102 |
+
|
103 |
+
# Add email to the config
|
104 |
+
pyalex.config.email = "[email protected]"
|
105 |
+
|
106 |
+
# Define a pager object with the same query
|
107 |
+
pager = Works().search(str(query)).paginate(per_page=n_results, n_max=n_results)
|
108 |
+
|
109 |
+
# Generate a list of the results
|
110 |
+
openalex_results = list(pager)
|
111 |
+
|
112 |
+
# Get the titles, descriptions, and publishers and append them to the lists
|
113 |
+
for result in openalex_results[0]:
|
114 |
+
try:
|
115 |
+
titles.append(result["title"])
|
116 |
+
except KeyError:
|
117 |
+
titles.append("Null")
|
118 |
+
|
119 |
+
try:
|
120 |
+
descriptions.append(result["abstract"])
|
121 |
+
except KeyError:
|
122 |
+
descriptions.append("Null")
|
123 |
+
|
124 |
+
try:
|
125 |
+
publishers.append(result["host_venue"]["publisher"])
|
126 |
+
except KeyError:
|
127 |
+
publishers.append("Null")
|
128 |
+
|
129 |
+
try:
|
130 |
+
authors.append(result["authorships"][0]["author"]["display_name"])
|
131 |
+
except KeyError:
|
132 |
+
authors.append("Null")
|
133 |
+
|
134 |
images.append(
|
135 |
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
136 |
)
|
137 |
|
138 |
+
return titles, authors, publishers, descriptions, images
|
139 |
+
|
140 |
+
# Run the openalex_search function
|
141 |
+
(
|
142 |
+
titles_placeholder,
|
143 |
+
authors_placeholder,
|
144 |
+
publishers_placeholder,
|
145 |
+
descriptions_placeholder,
|
146 |
+
images_placeholder,
|
147 |
+
) = openalex_search(query)
|
148 |
+
|
149 |
+
# Append the results to the lists
|
150 |
+
titles.extend(titles_placeholder)
|
151 |
+
authors.extend(authors_placeholder)
|
152 |
+
publishers.extend(publishers_placeholder)
|
153 |
+
descriptions.extend(descriptions_placeholder)
|
154 |
+
images.extend(images_placeholder)
|
155 |
+
|
156 |
+
# Calculate the elapsed time between the first and second checkpoints
|
157 |
+
second_checkpoint = time.time()
|
158 |
+
second_checkpoint_time = int(second_checkpoint - first_checkpoint)
|
159 |
+
|
160 |
+
def openai_search(query, n_results=10):
|
161 |
+
"""
|
162 |
+
Create a query to the OpenAI ChatGPT API and return the results.
|
163 |
+
"""
|
164 |
+
import openai
|
165 |
+
|
166 |
+
# Set the OpenAI API key
|
167 |
+
openai.api_key = "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"
|
168 |
+
|
169 |
+
# Create ChatGPT query
|
170 |
+
chatgpt_response = openai.ChatCompletion.create(
|
171 |
+
model="gpt-3.5-turbo",
|
172 |
+
messages=[
|
173 |
+
{
|
174 |
+
"role": "system",
|
175 |
+
"content": "You are a librarian. You are helping a patron find a book.",
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"role": "user",
|
179 |
+
"content": f"Recommend me {n_results} books about {query}. Your response should be like: 'title: <title>, author: <author>, publisher: <publisher>, summary: <summary>'",
|
180 |
+
},
|
181 |
+
],
|
182 |
)
|
183 |
|
184 |
+
# Split the response into a list of results
|
185 |
+
chatgpt_results = chatgpt_response["choices"][0]["message"]["content"].split(
|
186 |
+
"\n"
|
187 |
+
)[2::2]
|
188 |
+
|
189 |
+
# Define a function to parse the results
|
190 |
+
def parse_result(
|
191 |
+
result, ordered_keys=["Title", "Author", "Publisher", "Summary"]
|
192 |
+
):
|
193 |
+
# Create a dict to store the key-value pairs
|
194 |
+
parsed_result = {}
|
195 |
+
|
196 |
+
for key in ordered_keys:
|
197 |
+
# Split the result string by the key and append the value to the list
|
198 |
+
if key != ordered_keys[-1]:
|
199 |
+
parsed_result[key] = result.split(f"{key}: ")[1].split(",")[0]
|
200 |
+
else:
|
201 |
+
parsed_result[key] = result.split(f"{key}: ")[1]
|
202 |
+
|
203 |
+
return parsed_result
|
204 |
+
|
205 |
+
ordered_keys = ["Title", "Author", "Publisher", "Summary"]
|
206 |
+
|
207 |
+
for result in chatgpt_results:
|
208 |
+
try:
|
209 |
+
# Parse the result
|
210 |
+
parsed_result = parse_result(result, ordered_keys=ordered_keys)
|
211 |
+
|
212 |
+
# Append the parsed result to the lists
|
213 |
+
titles.append(parsed_result["Title"])
|
214 |
+
authors.append(parsed_result["Author"])
|
215 |
+
publishers.append(parsed_result["Publisher"])
|
216 |
+
descriptions.append(parsed_result["Summary"])
|
217 |
+
images.append(
|
218 |
+
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
|
219 |
+
)
|
220 |
+
|
221 |
+
# In case the OpenAI API hits the limit
|
222 |
+
except IndexError:
|
223 |
+
break
|
224 |
+
|
225 |
+
return titles, authors, publishers, descriptions, images
|
226 |
+
|
227 |
+
# Run the openai_search function
|
228 |
+
(
|
229 |
+
titles_placeholder,
|
230 |
+
authors_placeholder,
|
231 |
+
publishers_placeholder,
|
232 |
+
descriptions_placeholder,
|
233 |
+
images_placeholder,
|
234 |
+
) = openai_search(query)
|
235 |
+
|
236 |
+
# Append the results to the lists
|
237 |
+
titles.extend(titles_placeholder)
|
238 |
+
authors.extend(authors_placeholder)
|
239 |
+
publishers.extend(publishers_placeholder)
|
240 |
+
descriptions.extend(descriptions_placeholder)
|
241 |
+
images.extend(images_placeholder)
|
242 |
+
|
243 |
+
# Calculate the elapsed time between the second and third checkpoints
|
244 |
+
third_checkpoint = time.time()
|
245 |
+
third_checkpoint_time = int(third_checkpoint - second_checkpoint)
|
246 |
+
|
247 |
+
def predict(titles, descriptions, publishers, similarity=similarity):
|
248 |
+
"""
|
249 |
+
Create a summarizer and classifier pipeline and return the results.
|
250 |
+
"""
|
251 |
+
from transformers import (
|
252 |
+
AutoTokenizer,
|
253 |
+
AutoModelForSeq2SeqLM,
|
254 |
+
AutoModelForSequenceClassification,
|
255 |
+
pipeline,
|
256 |
+
)
|
257 |
+
from sentence_transformers import SentenceTransformer
|
258 |
|
259 |
+
# Combine title, description, and publisher into a single string
|
260 |
+
combined_data = [
|
261 |
+
f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
|
262 |
+
for title, description, publisher in zip(titles, descriptions, publishers)
|
263 |
+
]
|
264 |
|
265 |
+
# Define the summarizer model and tokenizer
|
266 |
+
sum_tokenizer = AutoTokenizer.from_pretrained("pszemraj/led-base-book-summary")
|
|
|
|
|
267 |
|
268 |
+
sum_model = AutoModelForSeq2SeqLM.from_pretrained(
|
269 |
+
"pszemraj/led-base-book-summary"
|
270 |
+
)
|
271 |
+
# sum_model = AutoModelForSeq2SeqLM.from_pretrained("lidiya/bart-base-samsum")
|
|
|
|
|
272 |
|
273 |
+
summarizer_pipeline = pipeline(
|
274 |
+
"summarization",
|
275 |
+
model=sum_model,
|
276 |
+
tokenizer=sum_tokenizer,
|
277 |
+
batch_size=64,
|
278 |
+
)
|
279 |
|
280 |
+
# Define the zero-shot classifier
|
281 |
+
zs_tokenizer = AutoTokenizer.from_pretrained(
|
282 |
+
"sileod/deberta-v3-base-tasksource-nli"
|
283 |
+
)
|
284 |
|
285 |
+
zs_model = AutoModelForSequenceClassification.from_pretrained(
|
286 |
+
"sileod/deberta-v3-base-tasksource-nli"
|
287 |
+
)
|
288 |
+
zs_classifier = pipeline(
|
289 |
+
"zero-shot-classification",
|
290 |
+
model=zs_model,
|
291 |
+
tokenizer=zs_tokenizer,
|
292 |
+
batch_size=64,
|
293 |
+
hypothesis_template="This book is {}.",
|
294 |
+
multi_label=True,
|
295 |
+
)
|
296 |
|
297 |
+
# Summarize the descriptions
|
298 |
+
summaries = [
|
299 |
+
summarizer_pipeline(description[0:1024])
|
300 |
+
if (description != None)
|
301 |
+
else [{"summary_text": "Null"}]
|
302 |
+
for description in descriptions
|
303 |
+
]
|
304 |
+
|
305 |
+
# Predict the level of the book
|
306 |
+
candidate_labels = [
|
307 |
+
"Introductory",
|
308 |
+
"Advanced",
|
309 |
+
"Academic",
|
310 |
+
"Not Academic",
|
311 |
+
"Manual",
|
312 |
+
]
|
313 |
+
|
314 |
+
# Get the predicted labels
|
315 |
+
classes = [zs_classifier(doc, candidate_labels) for doc in combined_data]
|
316 |
+
|
317 |
+
# Calculate the similarity between the books
|
318 |
+
if similarity != "false":
|
319 |
+
from sentence_transformers import util
|
320 |
+
|
321 |
+
sentence_transformer = SentenceTransformer("all-MiniLM-L6-v2")
|
322 |
+
book_embeddings = sentence_transformer.encode(
|
323 |
+
combined_data, convert_to_tensor=True
|
324 |
)
|
325 |
|
326 |
+
similar_books = []
|
327 |
+
for i in range(len(titles)):
|
328 |
+
current_embedding = book_embeddings[i]
|
329 |
|
330 |
+
similarity_sorted = util.semantic_search(
|
331 |
+
current_embedding, book_embeddings, top_k=20
|
332 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
+
similar_books.append(
|
335 |
+
{
|
336 |
+
"sorted_by_similarity": similarity_sorted[0][1:],
|
337 |
+
}
|
338 |
+
)
|
339 |
+
else:
|
340 |
+
similar_books = [{"sorted_by_similarity": []} for i in range(len(titles))]
|
341 |
|
342 |
+
return summaries, classes, similar_books
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
+
# Run the predict function
|
345 |
+
summaries, classes, similar_books = predict(
|
346 |
+
titles, descriptions, publishers, similarity=similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
)
|
348 |
|
349 |
+
# Calculate the elapsed time between the third and fourth checkpoints
|
350 |
+
fourth_checkpoint = time.time()
|
351 |
+
fourth_checkpoint_time = int(fourth_checkpoint - third_checkpoint)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
|
353 |
# Calculate the elapsed time
|
354 |
end_time = time.time()
|
355 |
runtime = f"{end_time - start_time:.2f} seconds"
|
356 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
# Create a list of dictionaries to store the results
|
358 |
results = [
|
359 |
{
|
|
|
366 |
"label_confidences": classes[i]["scores"][0:2],
|
367 |
"summary": summaries[i][0]["summary_text"],
|
368 |
"similar_books": similar_books[i]["sorted_by_similarity"],
|
369 |
+
"checkpoints": [
|
370 |
+
first_checkpoint_time,
|
371 |
+
second_checkpoint_time,
|
372 |
+
third_checkpoint_time,
|
373 |
+
fourth_checkpoint_time,
|
374 |
+
],
|
375 |
"runtime": runtime,
|
376 |
}
|
377 |
for i in range(len(titles))
|