Spaces:
Running
Running
File size: 3,139 Bytes
bebad14 e700082 bebad14 dffaf30 bebad14 bca3a49 f1046e9 bebad14 3f88de2 d76e1ad bebad14 e700082 bca3a49 bebad14 bca3a49 3f88de2 bca3a49 bebad14 f1046e9 bca3a49 bebad14 f354223 bebad14 c0df2f3 3f88de2 f354223 bca3a49 bebad14 28cb117 bebad14 44470f9 28cb117 d76e1ad 28cb117 130e4f7 28cb117 bca3a49 4853a01 bca3a49 28cb117 dadbe2e bebad14 3f88de2 bca3a49 dffaf30 bebad14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import time
import traceback
import gradio as gr
from gradio_molecule3d import Molecule3D
from run_on_seq import run_on_sample_seqs
from env_consts import RUN_CONFIG_PATH, OUTPUT_PROT_PATH, OUTPUT_LIG_PATH, MODEL_NAME_TO_CKPT
def predict(input_sequence, input_ligand, input_protein, model_variation):
print("Strating inference!!!!!!!!!!!!!!!!!", input_sequence, input_ligand, input_protein)
start_time = time.time()
try:
ckpt_path = MODEL_NAME_TO_CKPT[model_variation]
metrics = run_on_sample_seqs(input_sequence, input_protein, input_ligand, OUTPUT_PROT_PATH, OUTPUT_LIG_PATH,
RUN_CONFIG_PATH, ckpt_path)
end_time = time.time()
run_time = end_time - start_time
return [OUTPUT_PROT_PATH, OUTPUT_LIG_PATH], metrics, run_time
except Exception as e:
print(f"Error during inference: {e}")
traceback.print_exc() # Print the full traceback
return None, {"error": str(e)}, "Error occurred" # return error message to the output.
with gr.Blocks() as app:
print("Starting app!!!!")
gr.Markdown("DockFormer")
model_variation = gr.Dropdown(
choices=["DockFormer-Screen", "DockFormer-PDBBind", "DockFormer-PLINDER"],
label="Select model variation",
value="DockFormer-Screen" # Default value
)
# gr.Markdown("Title, description, and other information about the model")
with gr.Row():
input_sequence = gr.Textbox(lines=3, label="Input Protein sequence (FASTA)")
input_ligand = gr.Textbox(lines=3, label="Input ligand SMILES")
with gr.Row():
# input_msa = gr.File(label="Input Protein MSA (A3M)")
input_protein = gr.File(label="Input protein monomer")
# define any options here
# for automated inference the default options are used
# slider_option = gr.Slider(0,10, label="Slider Option")
# checkbox_option = gr.Checkbox(label="Checkbox Option")
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
btn = gr.Button("Run Inference")
gr.Examples(
[
[
"MLLLPLPLLLFLLCSRAEAGEIIGGTESKPHSRPYMAYLEIVTSNGPSKFCGGFLIRRNFVLTAAHCAGRSITVTLGAHNITEEEDTWQKLEVIKQFRHPKYNTSTLHHDIMLLKLKEKASLTLAVGTLPFPSQKNFVPPGRMCRVAGWGRTGVLKPGSDTLQEVKLRLMDPQACSHFRDFDHNLQLCVGNPRKTKSAFKGDSGGPLLCAGVAQGIVSYGRSDAKPPAVFTRISHYRPWINQILQAN",
"[nH]1c5c(c(c1C(c2ccccc2)C3=C(C(CC3=O)c4ccccc4)O)CCNC(=O)C)ccc(c5)CC",
"resources/example/L1001.pdb"
],
],
[input_sequence, input_ligand, input_protein],
)
reps = [
{
"model": 0,
"style": "cartoon",
"color": "whiteCarbon",
},
{
"model": 1,
"style": "stick",
"color": "greenCarbon",
}
]
out = Molecule3D(reps=reps)
metrics = gr.JSON(label="Metrics")
run_time = gr.Textbox(label="Runtime")
btn.click(predict, inputs=[input_sequence, input_ligand, input_protein, model_variation],
outputs=[out, metrics, run_time])
app.launch()
|