File size: 3,139 Bytes
bebad14
e700082
bebad14
dffaf30
 
bebad14
bca3a49
f1046e9
bebad14
 
3f88de2
d76e1ad
bebad14
e700082
 
 
 
 
 
 
 
 
 
 
bca3a49
bebad14
bca3a49
3f88de2
bca3a49
bebad14
f1046e9
 
 
 
 
 
bca3a49
bebad14
f354223
bebad14
c0df2f3
3f88de2
f354223
bca3a49
bebad14
 
28cb117
bebad14
 
 
 
44470f9
28cb117
 
 
 
d76e1ad
 
 
28cb117
 
130e4f7
28cb117
bca3a49
 
 
 
 
 
4853a01
bca3a49
 
 
 
 
 
 
28cb117
dadbe2e
bebad14
 
3f88de2
bca3a49
dffaf30
bebad14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import time
import traceback

import gradio as gr

from gradio_molecule3d import Molecule3D
from run_on_seq import run_on_sample_seqs
from env_consts import RUN_CONFIG_PATH, OUTPUT_PROT_PATH, OUTPUT_LIG_PATH, MODEL_NAME_TO_CKPT


def predict(input_sequence, input_ligand, input_protein, model_variation):
    print("Strating inference!!!!!!!!!!!!!!!!!", input_sequence, input_ligand, input_protein)
    start_time = time.time()
    try:
        ckpt_path = MODEL_NAME_TO_CKPT[model_variation]
        metrics = run_on_sample_seqs(input_sequence, input_protein, input_ligand, OUTPUT_PROT_PATH, OUTPUT_LIG_PATH,
                                     RUN_CONFIG_PATH, ckpt_path)
        end_time = time.time()
        run_time = end_time - start_time
        return [OUTPUT_PROT_PATH, OUTPUT_LIG_PATH], metrics, run_time
    except Exception as e:
        print(f"Error during inference: {e}")
        traceback.print_exc()  # Print the full traceback
        return None, {"error": str(e)}, "Error occurred"  # return error message to the output.


with gr.Blocks() as app:
    print("Starting app!!!!")
    gr.Markdown("DockFormer")

    model_variation = gr.Dropdown(
        choices=["DockFormer-Screen", "DockFormer-PDBBind", "DockFormer-PLINDER"],
        label="Select model variation",
        value="DockFormer-Screen"  # Default value
    )

    # gr.Markdown("Title, description, and other information about the model")
    with gr.Row():
        input_sequence = gr.Textbox(lines=3, label="Input Protein sequence (FASTA)")
        input_ligand = gr.Textbox(lines=3, label="Input ligand SMILES")
    with gr.Row():
        # input_msa = gr.File(label="Input Protein MSA (A3M)")
        input_protein = gr.File(label="Input protein monomer")

    # define any options here

    # for automated inference the default options are used
    # slider_option = gr.Slider(0,10, label="Slider Option")
    # checkbox_option = gr.Checkbox(label="Checkbox Option")
    # dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")

    btn = gr.Button("Run Inference")

    gr.Examples(
        [
            [
                "MLLLPLPLLLFLLCSRAEAGEIIGGTESKPHSRPYMAYLEIVTSNGPSKFCGGFLIRRNFVLTAAHCAGRSITVTLGAHNITEEEDTWQKLEVIKQFRHPKYNTSTLHHDIMLLKLKEKASLTLAVGTLPFPSQKNFVPPGRMCRVAGWGRTGVLKPGSDTLQEVKLRLMDPQACSHFRDFDHNLQLCVGNPRKTKSAFKGDSGGPLLCAGVAQGIVSYGRSDAKPPAVFTRISHYRPWINQILQAN",
                "[nH]1c5c(c(c1C(c2ccccc2)C3=C(C(CC3=O)c4ccccc4)O)CCNC(=O)C)ccc(c5)CC",
                "resources/example/L1001.pdb"
            ],
        ],
        [input_sequence, input_ligand, input_protein],
    )
    reps = [
        {
            "model": 0,
            "style": "cartoon",
            "color": "whiteCarbon",
        },
        {
            "model": 1,
            "style": "stick",
            "color": "greenCarbon",
        }

    ]

    out = Molecule3D(reps=reps)
    metrics = gr.JSON(label="Metrics")
    run_time = gr.Textbox(label="Runtime")

    btn.click(predict, inputs=[input_sequence, input_ligand, input_protein, model_variation],
              outputs=[out, metrics, run_time])

app.launch()