Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,337 Bytes
00e0e52 9516a6e 24bd732 9516a6e 24bd732 9516a6e d0d9cc8 9516a6e 00e0e52 e662e01 cdde2e9 00e0e52 cdde2e9 00e0e52 a01b38a 00e0e52 cdde2e9 00e0e52 9516a6e a01b38a 9516a6e 00e0e52 9516a6e 00e0e52 31b7f65 00e0e52 f311011 00e0e52 31b7f65 00e0e52 31b7f65 00e0e52 31b7f65 00e0e52 31b7f65 00e0e52 634a721 31b7f65 634a721 00e0e52 634a721 00e0e52 634a721 00e0e52 31b7f65 634a721 00e0e52 634a721 9dd4304 634a721 00e0e52 634a721 31b7f65 30e0dca 31b7f65 30e0dca 31b7f65 9dd4304 31b7f65 30e0dca 31b7f65 9dd4304 634a721 00e0e52 634a721 00e0e52 634a721 00e0e52 634a721 00e0e52 634a721 31b7f65 9dd4304 31b7f65 634a721 00e0e52 31b7f65 b924477 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# Install dependencies in application code, as we don't have access to a GPU at build time
# Thanks to https://huggingface.co/Steveeeeeeen for their code to handle this!
import os
import shlex
import subprocess
subprocess.run(shlex.split("pip install flash-attn --no-build-isolation"), env=os.environ | {"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, check=True)
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.4/mamba_ssm-2.2.4+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"), check=True)
subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.5.0.post8/causal_conv1d-1.5.0.post8+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"), check=True)
import spaces
import gradio as gr
import numpy as np
from typing import Tuple, Dict, Any, Optional
from taproot import Task
# Configuration
is_hf_spaces = os.getenv("SYSTEM", "") == "spaces"
max_characters = 2000
header_markdown = """
# Zonos v0.1
State of the art text-to-speech model [[model]](https://huggingface.co/collections/Zyphra/zonos-v01-67ac661c85e1898670823b4f). [[blog]](https://www.zyphra.com/post/beta-release-of-zonos-v0-1), [[Zyphra Audio (hosted service)]](https://maia.zyphra.com/sign-in?redirect_url=https%3A%2F%2Fmaia.zyphra.com%2Faudio)
## Unleashed
Use this space to generate long-form speech up to around ~2 minutes in length. To generate an unlimited length, clone this space and run it locally.
### Tips
- When providing prefix audio, include the text of the prefix audio in your speech text to ensure a smooth transition.
- The appropriate range of Speaking Rate and Pitch STD are highly dependent on the speaker audio. Start with the defaults and adjust as needed.
- Emotion sliders do not completely function intuitively, and require some experimentation to get the desired effect.
""".strip()
# Create pipelines, downloading required files as necessary
speech_enhancement = Task.get("speech-enhancement", model="deep-filter-net-v3", available_only=False)
speech_enhancement.download_required_files(text_callback=print)
hybrid_task = Task.get("speech-synthesis", model="zonos-hybrid", available_only=False)
hybrid_task.download_required_files(text_callback=print)
hybrid_pipe = hybrid_task()
hybrid_pipe.load(allow_optional=True)
transformer_task = Task.get(
"speech-synthesis", model="zonos-transformer", available_only=False
)
transformer_task.download_required_files(text_callback=print)
transformer_pipe = transformer_task()
if is_hf_spaces:
# Must load all models on GPU when using ZERO
transformer_pipe.load(allow_optional=True)
# Global state
pipelines = {
"Zonos Transformer v0.1": transformer_pipe,
"Zonos Hybrid v0.1": hybrid_pipe,
}
pipeline_names = list(pipelines.keys())
supported_language_codes = hybrid_pipe.supported_languages # Same for both pipes
# Model toggle
def update_ui(pipeline_choice: str) -> Tuple[Dict[str, Any], ...]:
"""
Dynamically show/hide UI elements based on the model's conditioners.
"""
if not is_hf_spaces:
# When not using ZERO, we can onload/offload pipes
for pipeline_name, pipeline in pipelines.items():
if pipeline_name == pipeline_choice:
pipeline.load()
else:
pipeline.unload()
pipe = pipelines[pipeline_choice]
cond_names = [c.name for c in pipe.pretrained.model.prefix_conditioner.conditioners]
vqscore_update = gr.update(visible=("vqscore_8" in cond_names))
emotion_update = gr.update(visible=("emotion" in cond_names))
fmax_update = gr.update(visible=("fmax" in cond_names))
pitch_update = gr.update(visible=("pitch_std" in cond_names))
speaking_rate_update = gr.update(visible=("speaking_rate" in cond_names))
dnsmos_update = gr.update(visible=("dnsmos_ovrl" in cond_names))
speaker_noised_update = gr.update(visible=("speaker_noised" in cond_names))
return (
vqscore_update,
emotion_update,
fmax_update,
pitch_update,
speaking_rate_update,
dnsmos_update,
speaker_noised_update,
)
# Invocation method
@spaces.GPU(duration=180)
def generate_audio(
pipeline_choice: str,
text: str,
language: str,
speaker_audio: Optional[str],
prefix_audio: Optional[str],
e1: float,
e2: float,
e3: float,
e4: float,
e5: float,
e6: float,
e7: float,
e8: float,
vq_single: float,
fmax: float,
pitch_std: float,
speaking_rate: float,
dnsmos_ovrl: float,
speaker_noised: bool,
cfg_scale: float,
min_p: float,
seed: int,
max_chunk_length: int,
cross_fade_duration: float,
punctuation_pause_duration: float,
target_rms: float,
randomize_seed: bool,
skip_dnsmos: bool,
skip_vqscore: bool,
skip_fmax: bool,
skip_pitch: bool,
skip_speaking_rate: bool,
skip_emotion: bool,
skip_speaker: bool,
speaker_pitch_shift: float,
speaker_equalize: bool,
speaker_enhance: bool,
prefix_equalize: bool,
prefix_enhance: bool,
enhance: bool,
progress=gr.Progress(),
) -> Tuple[Tuple[int, np.ndarray[Any, Any]], int]:
"""
Generates audio based on the provided UI parameters.
"""
selected_pipeline = pipelines[pipeline_choice]
if randomize_seed:
seed = np.random.randint(0, 2**32)
def on_progress(step: int, total: int) -> None:
progress((step, total))
print(f"{speaker_audio=}")
selected_pipeline.on_progress(on_progress)
try:
wav_out = selected_pipeline(
text=text,
enhance=enhance,
language=language,
reference_audio=speaker_audio,
reference_audio_pitch_shift=speaker_pitch_shift,
equalize_reference_audio=speaker_equalize,
enhance_reference_audio=speaker_enhance,
prefix_audio=prefix_audio,
equalize_prefix_audio=prefix_equalize,
enhance_prefix_audio=prefix_enhance,
seed=seed,
max_chunk_length=max_chunk_length,
cross_fade_duration=cross_fade_duration,
punctuation_pause_duration=punctuation_pause_duration,
target_rms=target_rms,
cfg_scale=cfg_scale,
min_p=min_p,
fmax=fmax,
pitch_std=pitch_std,
emotion_happiness=e1,
emotion_sadness=e2,
emotion_disgust=e3,
emotion_fear=e4,
emotion_surprise=e5,
emotion_anger=e6,
emotion_other=e7,
emotion_neutral=e8,
speaking_rate=speaking_rate,
vq_score=vq_single,
speaker_noised=speaker_noised,
dnsmos=dnsmos_ovrl,
skip_speaker=skip_speaker,
skip_dnsmos=skip_dnsmos,
skip_vq_score=skip_vqscore,
skip_fmax=skip_fmax,
skip_pitch=skip_pitch,
skip_speaking_rate=skip_speaking_rate,
skip_emotion=skip_emotion,
output_format="float",
)
return (
(
48000 if enhance else 44100,
wav_out.squeeze().numpy()
),
seed
)
finally:
selected_pipeline.off_progress()
# Interface
if __name__ == "__main__":
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=3):
gr.Markdown(header_markdown)
gr.Image(
value="https://raw.githubusercontent.com/Zyphra/Zonos/refs/heads/main/assets/ZonosHeader.png",
container=False,
interactive=False,
show_label=False,
show_share_button=False,
show_fullscreen_button=False,
show_download_button=False,
)
with gr.Row(equal_height=True):
pipeline_choice = gr.Dropdown(
choices=pipeline_names,
value=pipeline_names[0],
label="Zonos Model Variant",
)
language = gr.Dropdown(
choices=supported_language_codes,
value="en-us",
label="Language",
)
enhanced_checkbox = gr.Checkbox(
value=True,
label="Enhance Output with DeepFilterNet"
)
with gr.Row():
if not is_hf_spaces:
limit_text = "Unlimited"
else:
limit_text = f"Up to {max_characters}"
text = gr.Textbox(
label=f"Speech Text ({limit_text} Characters)",
value="Zonos is a state-of-the-art text-to-speech model that generates expressive and natural-sounding audio with robust customization options.",
lines=4,
max_lines=20,
max_length=max_characters if is_hf_spaces else None,
)
with gr.Row():
generate_button = gr.Button("Generate Audio")
with gr.Row():
output_audio = gr.Audio(label="Generated Audio", type="numpy", autoplay=True)
with gr.Row():
gr.Markdown("## Long-Form Parameters")
with gr.Column(variant="panel"):
with gr.Row(equal_height=True):
max_chunk_length = gr.Slider(
1, 300, 150, 1, label="Max Chunk Length (Characters)",
info="The maximum number of characters to generate in a single chunk. Zonos itself has a much higher limit than this, but consistency breaks down as you go past ~200 characters or so."
)
target_rms = gr.Slider(
0.0, 1.0, 0.10, 0.01, label="Target RMS",
info="The target RMS (root-mean-square) amplitude for the generated audio. Each chunk will have its loudness normalized to this value to ensure consistent volume levels."
)
with gr.Row(equal_height=True):
punctuation_pause_duration = gr.Slider(
0, 1, 0.10, 0.01, label="Punctuation Pause Duration (Seconds)",
info="Pause duration to add after a chunk that ends with punctuation. Full-stop punctuation (periods) will have the entire length, while shorter pauses will use half of this duration."
)
cross_fade_duration = gr.Slider(
0, 1, 0.15, 0.01, label="Chunk Cross-Fade Duration (Seconds)",
info="The duration of the cross-fade between chunks. This helps to smooth out transitions between chunks. In general, this should be set to a value greater than the pause duration."
)
with gr.Row():
gr.Markdown("## Generation Parameters")
with gr.Row(variant="panel", equal_height=True):
with gr.Column():
prefix_audio = gr.Audio(
label="Optional Prefix Audio (continue from this audio)",
type="filepath",
)
prefix_equalize_checkbox = gr.Checkbox(label="Equalize Prefix Audio", value=True)
prefix_enhance_checkbox = gr.Checkbox(label="Enhance Prefix Audio with DeepFilterNet", value=True)
with gr.Column(scale=3):
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.0, 0.1, label="CFG Scale")
min_p_slider = gr.Slider(0.0, 1.0, 0.15, 0.01, label="Min P")
seed_number = gr.Number(label="Seed", value=6475309, precision=0)
randomize_seed_toggle = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
gr.Markdown(
"## Conditioning Parameters\nAll of these types of conditioning are optional and can be disabled."
)
with gr.Row(variant="panel", equal_height=True) as speaker_row:
with gr.Column():
speaker_uncond = gr.Checkbox(label="Skip Speaker")
speaker_noised_checkbox = gr.Checkbox(
label="Speaker Noised",
value=False,
interactive=False,
info="'Speaker Noised' is a conditioning value that the model understands, not a processing step. Check this box if your input audio is noisy."
)
speaker_equalize_checkbox = gr.Checkbox(label="Equalize Speaker Audio", value=True)
speaker_enhance_checkbox = gr.Checkbox(label="Enhance Speaker Audio with DeepFilterNet", value=True)
def on_enhanced_change(use_enhance: bool) -> Dict[str, Any]:
update_dict = {"interactive": not use_enhance}
if use_enhance:
update_dict["value"] = False
return gr.update(**update_dict)
speaker_enhance_checkbox.change(
fn=on_enhanced_change,
inputs=[speaker_enhance_checkbox],
outputs=[speaker_noised_checkbox]
)
speaker_pitch_shift = gr.Slider(
-1200, 1200, -44.99, 0.01, label="Speaker Pitch Shift (Cents)",
info="A pitch shift to apply to speaker audio before extracting embeddings. A slight down-shift of ~45 cents tends to produce a more accurate voice cloning."
)
speaker_audio = gr.Audio(
label="Optional Speaker Audio (for cloning)",
type="filepath",
scale=3,
)
with gr.Row(variant="panel", equal_height=True) as emotion_row:
emotion_uncond = gr.Checkbox(label="Skip Emotion")
with gr.Column(scale=3):
with gr.Row():
emotion1 = gr.Slider(0.0, 1.0, 0.307, 0.001, label="Happiness")
emotion2 = gr.Slider(0.0, 1.0, 0.025, 0.001, label="Sadness")
emotion3 = gr.Slider(0.0, 1.0, 0.025, 0.001, label="Disgust")
emotion4 = gr.Slider(0.0, 1.0, 0.025, 0.001, label="Fear")
with gr.Row():
emotion5 = gr.Slider(0.0, 1.0, 0.025, 0.001, label="Surprise")
emotion6 = gr.Slider(0.0, 1.0, 0.025, 0.001, label="Anger")
emotion7 = gr.Slider(0.0, 1.0, 0.025, 0.001, label="Other")
emotion8 = gr.Slider(0.0, 1.0, 0.307, 0.001, label="Neutral")
with gr.Row(variant="panel", equal_height=True) as dnsmos_row:
dnsmos_uncond = gr.Checkbox(label="Skip DNSMOS")
dnsmos_slider = gr.Slider(
1.0,
5.0,
value=4.0,
step=0.1,
label="Deep Noise Suppression Mean Opinion Score [arXiv 2010.15258]",
scale=3,
)
with gr.Row(variant="panel", equal_height=True) as vq_score_row:
vq_uncond = gr.Checkbox(label="Skip VQScore")
vq_single_slider = gr.Slider(
0.5, 0.8, 0.78, 0.01, label="VQScore [arXiv 2402.16321]", scale=3
)
with gr.Row(variant="panel", equal_height=True) as fmax_row:
fmax_uncond = gr.Checkbox(label="Skip Fmax")
fmax_slider = gr.Slider(
0, 22050, value=22050, step=1, label="Fmax (Hz)", scale=3
)
with gr.Row(variant="panel", equal_height=True) as pitch_row:
pitch_uncond = gr.Checkbox(label="Skip Pitch")
pitch_std_slider = gr.Slider(
0.0, 300.0, value=20.0, step=1, label="Pitch Standard Deviation", scale=3
)
with gr.Row(variant="panel", equal_height=True) as speaking_rate_row:
speaking_rate_uncond = gr.Checkbox(label="Skip Speaking Rate")
speaking_rate_slider = gr.Slider(
5.0, 30.0, value=15.0, step=0.5, label="Speaking Rate", scale=3
)
pipeline_choice.change(
fn=update_ui,
inputs=[pipeline_choice],
outputs=[
vq_score_row,
emotion_row,
fmax_row,
pitch_row,
speaking_rate_row,
dnsmos_row,
speaker_noised_checkbox,
],
)
# Trigger UI update on load
demo.load(
fn=update_ui,
inputs=[pipeline_choice],
outputs=[
vq_score_row,
emotion_row,
fmax_row,
pitch_row,
speaking_rate_row,
dnsmos_row,
speaker_noised_checkbox,
],
)
# Generate audio on button click
generate_button.click(
fn=generate_audio,
inputs=[
pipeline_choice,
text,
language,
speaker_audio,
prefix_audio,
emotion1,
emotion2,
emotion3,
emotion4,
emotion5,
emotion6,
emotion7,
emotion8,
vq_single_slider,
fmax_slider,
pitch_std_slider,
speaking_rate_slider,
dnsmos_slider,
speaker_noised_checkbox,
cfg_scale_slider,
min_p_slider,
seed_number,
max_chunk_length,
cross_fade_duration,
punctuation_pause_duration,
target_rms,
randomize_seed_toggle,
dnsmos_uncond,
vq_uncond,
fmax_uncond,
pitch_uncond,
speaking_rate_uncond,
emotion_uncond,
speaker_uncond,
speaker_pitch_shift,
speaker_equalize_checkbox,
speaker_enhance_checkbox,
prefix_equalize_checkbox,
prefix_enhance_checkbox,
enhanced_checkbox,
],
outputs=[output_audio, seed_number],
)
demo.launch() |