Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,590 Bytes
6e5e1d5 f423428 fd83843 6e5e1d5 fd83843 81e3283 fd83843 4b66118 6cf8b24 fd83843 6e5e1d5 fd83843 6e5e1d5 fd83843 bc6519d 4b66118 fd83843 6cf8b24 fd83843 f423428 81e3283 f423428 fd83843 3e3a5b6 fd83843 6e5e1d5 a9bb828 6e5e1d5 a9bb828 6e5e1d5 a9bb828 6e5e1d5 0a55839 6e5e1d5 0a55839 6e5e1d5 a9bb828 6e5e1d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import gradio as gr
import numpy as np
import random
import gc
import json
import torch
import spaces
from huggingface_hub import hf_hub_download
from diffusers import (
AutoencoderKL,
SD3Transformer2DModel,
StableDiffusion3Pipeline,
FlowMatchEulerDiscreteScheduler
)
from diffusers.loaders.single_file_utils import (
convert_sd3_transformer_checkpoint_to_diffusers,
)
from transformers import (
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
T5Tokenizer
)
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from safetensors import safe_open
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
finetune_repo_id = "DoctorDiffusion/Absynth-2.0"
finetune_filename = "Absynth_SD3.5L_2.0.safetensors"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
# Initialize transformer
config_file = hf_hub_download(repo_id=model_repo_id, filename="transformer/config.json")
with open(config_file, "r") as fp:
config = json.load(fp)
with init_empty_weights():
transformer = SD3Transformer2DModel.from_config(config)
# Get transformer state dict and load
model_file = hf_hub_download(repo_id=finetune_repo_id, filename=finetune_filename)
state_dict = {}
with safe_open(model_file, framework="pt") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
state_dict = convert_sd3_transformer_checkpoint_to_diffusers(state_dict)
for key, value in state_dict.items():
set_module_tensor_to_device(
transformer,
key,
device,
value=value,
dtype=torch_dtype
)
# Try to keep memory usage down
del state_dict
gc.collect()
# Initialize models from base SD3.5
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae")
text_encoder = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder")
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder_2")
text_encoder_3 = T5EncoderModel.from_pretrained(model_repo_id, subfolder="text_encoder_3")
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer")
tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_2")
tokenizer_3 = T5Tokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_3")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler")
# Create pipeline from our models
pipe = StableDiffusion3Pipeline(
vae=vae,
scheduler=scheduler,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
text_encoder_3=text_encoder_3,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
tokenizer_3=tokenizer_3,
transformer=transformer
)
pipe = pipe.to(device, dtype=torch_dtype)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1536
@spaces.GPU(duration=65)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=4.5,
num_inference_steps=40,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"An astrounaut encounters an alien on the moon, photograph",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # [Absynth 2.0](https://huggingface.co/DoctorDiffusion/Absynth-2.0) by [DoctorDiffusion](https://civitai.com/user/doctor_diffusion)")
gr.Markdown("Finetuned from [Stable Diffusion 3.5 Large (8B)](https://huggingface.co/stabilityai/stable-diffusion-3.5-large) by [Stability AI](https://stability.ai/news/introducing-stable-diffusion-3-5).")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1344,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=4.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=40,
)
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|