File size: 6,590 Bytes
6e5e1d5
 
 
f423428
fd83843
6e5e1d5
fd83843
 
 
81e3283
 
 
 
 
 
 
 
 
fd83843
 
 
 
 
 
4b66118
6cf8b24
fd83843
6e5e1d5
 
 
fd83843
 
6e5e1d5
 
 
 
 
 
fd83843
 
 
bc6519d
4b66118
fd83843
 
 
 
 
 
 
 
 
 
6cf8b24
 
 
 
 
 
 
 
fd83843
f423428
 
 
 
 
 
 
 
 
 
 
 
81e3283
f423428
fd83843
 
 
3e3a5b6
fd83843
 
 
 
 
 
 
 
 
 
6e5e1d5
a9bb828
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9bb828
6e5e1d5
 
 
 
 
 
 
 
 
 
 
a9bb828
 
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a55839
6e5e1d5
 
 
 
 
 
 
0a55839
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9bb828
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
import numpy as np
import random
import gc
import json
import torch
import spaces

from huggingface_hub import hf_hub_download
from diffusers import (
    AutoencoderKL,
    SD3Transformer2DModel,
    StableDiffusion3Pipeline,
    FlowMatchEulerDiscreteScheduler
)
from diffusers.loaders.single_file_utils import (
    convert_sd3_transformer_checkpoint_to_diffusers,
)
from transformers import (
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    T5EncoderModel,
    T5Tokenizer
)
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from safetensors import safe_open

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
finetune_repo_id = "DoctorDiffusion/Absynth-2.0"
finetune_filename = "Absynth_SD3.5L_2.0.safetensors"

if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
else:
    torch_dtype = torch.float32

# Initialize transformer
config_file = hf_hub_download(repo_id=model_repo_id, filename="transformer/config.json")
with open(config_file, "r") as fp:
    config = json.load(fp)
with init_empty_weights():
    transformer = SD3Transformer2DModel.from_config(config)

# Get transformer state dict and load
model_file = hf_hub_download(repo_id=finetune_repo_id, filename=finetune_filename)
state_dict = {}
with safe_open(model_file, framework="pt") as f:
    for key in f.keys():
        state_dict[key] = f.get_tensor(key)

state_dict = convert_sd3_transformer_checkpoint_to_diffusers(state_dict)
for key, value in state_dict.items():
    set_module_tensor_to_device(
        transformer,
        key,
        device,
        value=value,
        dtype=torch_dtype
    )

# Try to keep memory usage down
del state_dict
gc.collect()

# Initialize models from base SD3.5
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae")
text_encoder = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder")
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder_2")
text_encoder_3 = T5EncoderModel.from_pretrained(model_repo_id, subfolder="text_encoder_3")
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer")
tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_2")
tokenizer_3 = T5Tokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_3")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler")

# Create pipeline from our models
pipe = StableDiffusion3Pipeline(
    vae=vae,
    scheduler=scheduler,
    text_encoder=text_encoder,
    text_encoder_2=text_encoder_2,
    text_encoder_3=text_encoder_3,
    tokenizer=tokenizer,
    tokenizer_2=tokenizer_2,
    tokenizer_3=tokenizer_3,
    transformer=transformer
)
pipe = pipe.to(device, dtype=torch_dtype)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1536

@spaces.GPU(duration=65)
def infer(
    prompt,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    guidance_scale=4.5,
    num_inference_steps=40,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "An astrounaut encounters an alien on the moon, photograph",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # [Absynth 2.0](https://huggingface.co/DoctorDiffusion/Absynth-2.0) by [DoctorDiffusion](https://civitai.com/user/doctor_diffusion)")
        gr.Markdown("Finetuned from [Stable Diffusion 3.5 Large (8B)](https://huggingface.co/stabilityai/stable-diffusion-3.5-large) by [Stability AI](https://stability.ai/news/introducing-stable-diffusion-3-5).")
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768, 
                )

                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1344,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=4.5,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=40, 
                )

        gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()