behlil commited on
Commit
66df09f
·
verified ·
1 Parent(s): 84c0919
__pycache__/utils.cpython-38.pyc ADDED
Binary file (760 Bytes). View file
 
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ from flask import Flask, render_template, request, jsonify
3
+ from utils import model_predict
4
+
5
+ app = Flask(__name__)
6
+
7
+ @app.route("/", methods=["GET"])
8
+ def index():
9
+ """
10
+ Serve the main HTML page.
11
+ """
12
+ return render_template("index.html")
13
+
14
+ @app.route("/predict", methods=["POST"])
15
+ def predict():
16
+ """
17
+ Handle POST requests for email classification.
18
+ """
19
+ data = request.json
20
+ email_content = data.get("email", "").strip()
21
+
22
+ if not email_content:
23
+ return jsonify({"error": "Please enter some text to classify."}), 400
24
+
25
+ prediction = model_predict(email_content)
26
+ result = "SPAM" if prediction == 1 else "NOT SPAM"
27
+
28
+ return jsonify({"result": result})
29
+
30
+ if __name__ == "__main__":
31
+ app.run(debug=True)
models/model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e267bcbe204f9d95acebc0f8680e73f1c7d390b54d70162835b811c3691a36e7
3
+ size 1560707
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ flask==2.3.2
2
+ scikit-learn
3
+ numpy
static/style.css ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /* General Styling */
2
+ body {
3
+ font-family: Arial, sans-serif;
4
+ background-color: #f4f4f9;
5
+ margin: 0;
6
+ padding: 0;
7
+ display: flex;
8
+ justify-content: center;
9
+ align-items: center;
10
+ height: 100vh;
11
+ }
12
+
13
+ .container {
14
+ background-color: #ffffff;
15
+ border-radius: 10px;
16
+ box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
17
+ padding: 30px 50px;
18
+ width: 100%;
19
+ max-width: 500px;
20
+ text-align: center;
21
+ }
22
+
23
+ h1 {
24
+ color: #333333;
25
+ margin-bottom: 20px;
26
+ }
27
+
28
+ textarea {
29
+ width: 100%;
30
+ height: 150px;
31
+ padding: 10px;
32
+ font-size: 16px;
33
+ border: 1px solid #cccccc;
34
+ border-radius: 5px;
35
+ margin-bottom: 20px;
36
+ resize: none;
37
+ }
38
+
39
+ button {
40
+ background-color: #007bff;
41
+ color: #ffffff;
42
+ border: none;
43
+ padding: 10px 20px;
44
+ font-size: 16px;
45
+ border-radius: 5px;
46
+ cursor: pointer;
47
+ transition: background-color 0.3s ease;
48
+ }
49
+
50
+ button:hover {
51
+ background-color: #0056b3;
52
+ }
53
+
54
+ a.reset-link {
55
+ margin-left: 10px;
56
+ color: #007bff;
57
+ text-decoration: none;
58
+ font-size: 16px;
59
+ }
60
+
61
+ a.reset-link:hover {
62
+ text-decoration: underline;
63
+ }
64
+
65
+ .result {
66
+ margin-top: 20px;
67
+ font-size: 18px;
68
+ font-weight: bold;
69
+ }
70
+
71
+ .spam {
72
+ color: #ff5252; /* Red for spam */
73
+ }
74
+
75
+ .not-spam {
76
+ color: #28a745; /* Green for not spam */
77
+ }
templates/index.html ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- templates/index.html -->
2
+ <!DOCTYPE html>
3
+ <html lang="en">
4
+ <head>
5
+ <meta charset="UTF-8">
6
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
7
+ <title>Email Spam Classifier</title>
8
+ <link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
9
+ </head>
10
+ <body>
11
+ <div class="container">
12
+ <h1>Email Spam Classifier</h1>
13
+
14
+ <!-- Form for entering email -->
15
+ <textarea id="emailInput" rows="6" cols="50" placeholder="Enter email content here..."></textarea>
16
+ <div>
17
+ <button id="checkButton">Check</button>
18
+ <button id="resetButton">Reset</button>
19
+ </div>
20
+
21
+ <!-- Display error message or prediction -->
22
+ <p id="outputMessage" class="message"></p>
23
+ </div>
24
+
25
+ <script>
26
+ // JavaScript to handle form submission and reset functionality
27
+ document.getElementById("checkButton").addEventListener("click", async () => {
28
+ const emailContent = document.getElementById("emailInput").value.trim();
29
+ const outputMessage = document.getElementById("outputMessage");
30
+
31
+ // Clear previous results
32
+ outputMessage.textContent = "";
33
+
34
+ if (!emailContent) {
35
+ outputMessage.textContent = "Please enter some text to classify.";
36
+ outputMessage.style.color = "red";
37
+ return;
38
+ }
39
+
40
+ try {
41
+ // Send email content to the Flask backend for prediction
42
+ const response = await fetch("/predict", {
43
+ method: "POST",
44
+ headers: { "Content-Type": "application/json" },
45
+ body: JSON.stringify({ email: emailContent }),
46
+ });
47
+
48
+ const result = await response.json();
49
+
50
+ if (response.ok) {
51
+ outputMessage.textContent = `This email is ${result.result}.`;
52
+ outputMessage.style.color = result.result === "SPAM" ? "red" : "green";
53
+ } else {
54
+ outputMessage.textContent = result.error || "An error occurred.";
55
+ outputMessage.style.color = "red";
56
+ }
57
+ } catch (error) {
58
+ outputMessage.textContent = "An error occurred while processing your request.";
59
+ outputMessage.style.color = "red";
60
+ }
61
+ });
62
+
63
+ // Reset button functionality
64
+ document.getElementById("resetButton").addEventListener("click", () => {
65
+ document.getElementById("emailInput").value = "";
66
+ document.getElementById("outputMessage").textContent = "";
67
+ });
68
+ </script>
69
+ </body>
70
+ </html>
utils.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # utils.py (Helper Functions)
2
+ import pickle
3
+ import numpy as np
4
+
5
+ def load_model():
6
+ """
7
+ Loads the trained model from file.
8
+ """
9
+ with open("models/model.pkl", "rb") as file:
10
+ model = pickle.load(file) # Use pickle to load the model
11
+ return model
12
+
13
+ def model_predict(email):
14
+ """
15
+ Predicts using the loaded model.
16
+ """
17
+ model = load_model() # Load the model before predicting
18
+ prediction = model.predict([email]) # Use the predict method to make predictions
19
+
20
+ # If the email is spam, prediction should be 1, otherwise 0
21
+ # Convert the prediction to 1 or -1 as specified
22
+ prediction = 1 if prediction[0] == 1 else -1
23
+
24
+ return prediction
25
+
26
+ with open("models/model.pkl", "rb") as file:
27
+ model = pickle.load(file)
28
+
29
+ print("Model loaded successfully!")
30
+