Spaces:
Runtime error
Runtime error
from email import generator | |
from diffusers import DiffusionPipeline | |
import gradio as gr | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
## VAE - Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. | |
from diffusers import AutoencoderKL | |
model = "stabilityai/stable-diffusion-xl-base-1.0" | |
finetuningLayer = "bbsgp/10xFWDLora" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
torch_dtype = torch.float16 if device.type == 'cuda' else torch.float32 | |
import os | |
# HF_API_TOKEN = os.getenv("HF_API_TOKEN") | |
# from huggingface_hub import login | |
# login(token=HF_API_TOKEN) | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype) | |
pipe = DiffusionPipeline.from_pretrained( | |
model, | |
vae=vae, | |
torch_dtype=torch_dtype, | |
use_safetensors=True | |
) | |
pipe.load_lora_weights(finetuningLayer) | |
pipe = pipe.to(device) | |
def create_error_image(message): | |
# Create a blank image with white background | |
width, height = 512, 512 | |
image = Image.new('RGB', (width, height), 'white') | |
draw = ImageDraw.Draw(image) | |
# Load a truetype or opentype font file | |
font = ImageFont.load_default() | |
# Position and message | |
draw.text((127,251), message, font=font, fill="black") | |
return image | |
def inference(model,finetuningLayer, prompt, guidance, steps, seed): | |
if not prompt: | |
return create_error_image("Sorry, add your text prompt and try again!!") | |
else: | |
generator = torch.Generator(device).manual_seed(seed) | |
image = pipe( | |
prompt, | |
num_inference_steps=int(steps), | |
guidance_scale=guidance, | |
generator=generator).images[0] | |
return image | |
css = """ | |
<style> | |
.finetuned-diffusion-div { | |
text-align: center; | |
max-width: 700px; | |
margin: 0 auto; | |
} | |
.finetuned-diffusion-div div { | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
} | |
.finetuned-diffusion-div div h1 { | |
font-weight: 900; | |
margin-bottom: 7px; | |
} | |
.finetuned-diffusion-div p { | |
margin-bottom: 10px; | |
font-size: 94%; | |
} | |
.finetuned-diffusion-div p a { | |
text-decoration: underline; | |
} | |
</style> | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
""" | |
<div class="finetuned-diffusion-div"> | |
<div> | |
<h1>Finetuned Diffusion</h1> | |
</div> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
model = gr.Dropdown(label="baseModel",choices=[model], default=model) | |
finetuningLayer= gr.Dropdown(label="Finetuning Layer", choices=[finetuningLayer], default=finetuningLayer) | |
prompt = gr.Textbox(label="Prompt", placeholder="photo of 10xFWD style, 2D flat illustration - it is unique identifier need to be used to identify 10xFWD") | |
with gr.Accordion("Advanced options", open=True): | |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15) | |
steps = gr.Slider(label="Steps", value=50, maximum=100, minimum=2) | |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) | |
run = gr.Button(value="Run") | |
gr.Markdown(f"Running on: {device}") | |
with gr.Column(): | |
image_out = gr.Image() | |
## Add prompt and press enter to run | |
##prompt.submit(inference, inputs=[model, finetuningLayer,prompt, guidance, steps, seed], outputs=image_out) | |
## Click run button to run | |
run.click(inference, inputs=[model, finetuningLayer, prompt, guidance, steps, seed], outputs=image_out) | |
demo.queue(default_enabled=True).launch(share=True,debug=True) | |
# demo.queue() | |
# demo.launch(auth=("FWDDNA", "10XFWD"),share=True) |