Bazyl
commited on
Commit
·
b124b3b
1
Parent(s):
fc7d2f4
use pipeline
Browse files- .gitignore +2 -0
- app.py +6 -10
- requirements.txt +1 -3
- test.py +22 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
/env/
|
2 |
+
/__pycache__/
|
app.py
CHANGED
@@ -1,21 +1,17 @@
|
|
1 |
-
from transformers import
|
2 |
from PIL import Image
|
3 |
-
import requests
|
4 |
import os
|
5 |
import gradio as gr
|
6 |
from timeit import default_timer as timer
|
7 |
from typing import Tuple, Dict
|
8 |
|
9 |
-
|
10 |
def predict(img) -> Tuple[Dict, float]:
|
11 |
start_time = timer()
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
predicted_class_idx = logits.argmax(-1).item()
|
18 |
-
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
19 |
|
20 |
title = "GTSRB - German Traffic Sign Recognition by Bazyl Horsey"
|
21 |
description = "CNN created for the GTSRB Dataset, achieved 99.93% test accuracy"
|
|
|
1 |
+
from transformers import pipeline
|
2 |
from PIL import Image
|
|
|
3 |
import os
|
4 |
import gradio as gr
|
5 |
from timeit import default_timer as timer
|
6 |
from typing import Tuple, Dict
|
7 |
|
|
|
8 |
def predict(img) -> Tuple[Dict, float]:
|
9 |
start_time = timer()
|
10 |
+
classifier = pipeline("image-classification", model="bazyl/gtsrb-model", tokenizer="bazyl/gtsrb-model")
|
11 |
+
result = classifier(img)
|
12 |
+
response = {result[i]["label"]: result[i]["score"] for i in range(len(result))}
|
13 |
+
pred_time = round(timer() - start_time, 5)
|
14 |
+
return response, pred_time
|
|
|
|
|
15 |
|
16 |
title = "GTSRB - German Traffic Sign Recognition by Bazyl Horsey"
|
17 |
description = "CNN created for the GTSRB Dataset, achieved 99.93% test accuracy"
|
requirements.txt
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
gradio==3.28.3
|
2 |
Pillow==9.5.0
|
3 |
-
|
4 |
-
transformers==4.28.1
|
5 |
-
torch==2.0.0
|
|
|
1 |
gradio==3.28.3
|
2 |
Pillow==9.5.0
|
3 |
+
transformers==4.28.1
|
|
|
|
test.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import ViTImageProcessor, ViTForImageClassification, AutoModelForImageClassification, AutoTokenizer, pipeline
|
2 |
+
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
import os
|
6 |
+
import gradio as gr
|
7 |
+
from timeit import default_timer as timer
|
8 |
+
from typing import Tuple, Dict
|
9 |
+
import torch
|
10 |
+
|
11 |
+
start_time = timer()
|
12 |
+
# config = AutoConfig.from_pretrained('bazyl/gtsrb-model')
|
13 |
+
|
14 |
+
|
15 |
+
image = Image.open('examples/00009.png')
|
16 |
+
classifier = pipeline("image-classification", model="bazyl/gtsrb-model", tokenizer="bazyl/gtsrb-model")
|
17 |
+
result = classifier(image)
|
18 |
+
response = {result[i]["label"]: result[i]["score"] for i in range(len(result))}
|
19 |
+
# Calculate the prediction time
|
20 |
+
pred_time = round(timer() - start_time, 5)
|
21 |
+
|
22 |
+
print(classifier(image), pred_time)
|