Spaces:
Sleeping
Sleeping
| import numpy as np | |
| from wavegru_mod import WaveGRU | |
| def extract_weight_mask(net): | |
| data = {} | |
| data["embed_weight"] = net.embed.weight | |
| data["gru_h_zrh_weight"] = net.rnn.h_zrh_fc.weight | |
| data["gru_h_zrh_mask"] = net.gru_pruner.h_zrh_fc_mask | |
| data["gru_h_zrh_bias"] = net.rnn.h_zrh_fc.bias | |
| data["o1_weight"] = net.o1.weight | |
| data["o1_mask"] = net.o1_pruner.mask | |
| data["o1_bias"] = net.o1.bias | |
| data["o2_weight"] = net.o2.weight | |
| data["o2_mask"] = net.o2_pruner.mask | |
| data["o2_bias"] = net.o2.bias | |
| return data | |
| def load_wavegru_cpp(data, repeat_factor): | |
| """load wavegru weight to cpp object""" | |
| embed = data["embed_weight"] | |
| rnn_dim = data["gru_h_zrh_bias"].shape[0] // 3 | |
| net = WaveGRU(rnn_dim, repeat_factor) | |
| net.load_embed(embed) | |
| m = np.ascontiguousarray(data["gru_h_zrh_weight"].T) | |
| mask = np.ascontiguousarray(data["gru_h_zrh_mask"].T) | |
| b = data["gru_h_zrh_bias"] | |
| o1 = np.ascontiguousarray(data["o1_weight"].T) | |
| masko1 = np.ascontiguousarray(data["o1_mask"].T) | |
| o1b = data["o1_bias"] | |
| o2 = np.ascontiguousarray(data["o2_weight"].T) | |
| masko2 = np.ascontiguousarray(data["o2_mask"].T) | |
| o2b = data["o2_bias"] | |
| net.load_weights(m, mask, b, o1, masko1, o1b, o2, masko2, o2b) | |
| return net | |