File size: 5,090 Bytes
d1f8a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e8d37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import streamlit as st
import pandas as pd
import numpy as np
import joblib

# Custom CSS for styling
st.markdown("""
    <style>
    /* General styling */
    body {
        background-color: #f0f2f6;
        font-family: 'Arial', sans-serif;
    }
    .stApp {
        max-width: 1200px;
        margin: 0 auto;
    }
    
    /* Title */
    .title {
        color: #2c3e50;
        font-size: 2.5em;
        text-align: center;
        margin-bottom: 0.5em;
    }
    
    /* Subheader */
    .subheader {
        color: #3498db;
        font-size: 1.2em;
        text-align: center;
        margin-bottom: 2em;
    }
    
    /* Input containers */
    .input-container {
        background-color: white;
        padding: 20px;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        margin-bottom: 20px;
    }
    
    /* Button styling */
    .stButton>button {
        background-color: #1a10e3;
        color: white;
        border: none;
        padding: 10px 20px;
        border-radius: 5px;
        font-weight: bold;
        transition: all 0.3s ease;
    }
    .stButton>button:hover {
        background-color: #c0392b;
        transform: scale(1.05);
    }
    
    /* Success message */
    .stSuccess {
        background-color: #2ecc71 !important;
        color: white !important;
        padding: 15px;
        border-radius: 5px;
        text-align: center;
        font-size: 1.2em;
    }
    
    /* Dataframe styling */
    .dataframe {
        border: 2px solid #3498db;
        border-radius: 5px;
        padding: 10px;
    }
    
    /* Footer */
    .footer {
        text-align: center;
        color: #7f8c8d;
        margin-top: 30px;
        font-size: 0.9em;
    }
    .footer b {
        color: #e74c3c;
    }
    
    /* Sidebar */
    .sidebar .sidebar-content {
        background-color: #34495e;
        color: white;
        padding: 20px;
    }
    </style>
""", unsafe_allow_html=True)

# Load the saved model and scaler
model = joblib.load('srn_rvp_model_version_2.pkl')
scaler = joblib.load('srn_rvp_scaler_version_2.pkl')

# Define feature names and default values
features = ['C_101_Top Temp', 'Stabiliser_feed', 'Kero_DOT ', 'Stab_Tray_3_temp ', 
            'Kero _reboiler_inlet_temp', 'Stab_top_pr', 'LGO_DOT', 'mp_stm_HGO_strp']
default_values = [130.0, 180.0, 200.0, 130.0, 250.0, 8.0, 270.0, 140.0]

# Sidebar for additional info
with st.sidebar:
    st.markdown("<h2 style='color: #ecf0f1;'>About</h2>", unsafe_allow_html=True)
    st.write("""
        This app predicts the **SRN RVP (Reid Vapor Pressure)** lab value for a Crude Distillation Unit (CDU) using a pre-trained machine learning model.
        
        **Features Used:**
        - Temperature measurements
        - Pressure readings
        - Flow rates
        
        
    """)
    st.image("distillation.jpg", caption="Refinery Process Predictive Modeling")

# Main app content
st.markdown("<h1 class='title'>🔬 CDU SRN 'RVP' Prediction Tool</h1>", unsafe_allow_html=True)
st.markdown("<p class='subheader'>Enter process parameters to predict the lab RVP value</p>", unsafe_allow_html=True)

# Input form in columns for better layout
st.markdown("<div class='input-container'>", unsafe_allow_html=True)
st.write("### Input Process Parameters")
col1, col2 = st.columns(2)

input_data = {}
for i, (feature, default) in enumerate(zip(features, default_values)):
    with col1 if i % 2 == 0 else col2:
        input_data[feature] = st.number_input(
            feature,
            min_value=0.0,
            max_value=1000.0,
            value=float(default),
            step=1.0,
            format="%.1f",
            key=feature
        )
st.markdown("</div>", unsafe_allow_html=True)

# Convert inputs to DataFrame
input_df = pd.DataFrame([input_data], columns=features)

# Predict button
if st.button("🔍 Predict Lab Value"):
    # Scale the input data
    input_scaled = scaler.transform(input_df)
    
    # Make prediction
    prediction = model.predict(input_scaled)[0]
    
    # Display result with animation
    st.markdown(f"""
        <div class='stSuccess'>
            Predicted RVP Lab Value: <b>{prediction:.4f} psi</b>
        </div>
    """, unsafe_allow_html=True)

# Display input values with corrected precision formatting
st.write("### Your Input Values")
# Use format() to set precision to 2 decimal places
styled_df = input_df.style.highlight_max(axis=0).format("{:.2f}")
st.dataframe(styled_df, use_container_width=True)

# Instructions expander
with st.expander("ℹ️ How to Use", expanded=False):
    st.markdown("""
        1. **Enter Values**: Adjust the input fields for each parameter.
        2. **Predict**: Click the "Predict Lab Value" button.
        3. **Review**: Check the predicted RVP and input values below.
        
        *Note*: This ML model is trained on refinery-specific data and uses scaled features for predictions.
    """)

# Footer
st.markdown("""
    <div class='footer'>
        Developed by <b>SKB</b> | © 2025 All Rights Reserved
    </div>
""", unsafe_allow_html=True)