Spaces:
Sleeping
Sleeping
File size: 11,833 Bytes
95117cd 0b07a42 f829331 0b07a42 2966484 0b07a42 58bb3ba c62f49a 4cb217b c62f49a 58bb3ba 4cb217b 58bb3ba 4cb217b 2966484 4cb217b c62f49a 4cb217b 58bb3ba 4cb217b 2966484 4cb217b 8530cb4 4cb217b 58bb3ba 0b07a42 adcaa2b e879520 2966484 adcaa2b 2966484 4cb217b e879520 e2a0c87 4cb217b d18a238 e2a0c87 0b07a42 f829331 0b07a42 f829331 0b07a42 f829331 0b07a42 f829331 0b07a42 f829331 95117cd f829331 0b07a42 f829331 95117cd 0b07a42 f829331 0b07a42 f829331 95117cd f829331 95117cd f829331 95117cd f829331 95117cd f829331 95117cd f829331 95117cd f829331 0b07a42 95117cd 0b07a42 74c94d1 0b07a42 f829331 95117cd f829331 adcaa2b 4cb217b adcaa2b 2980f51 d18a238 f829331 adcaa2b d18a238 adcaa2b 4cb217b 2966484 4cb217b adcaa2b f829331 af0f390 0b07a42 af0f390 0b07a42 40be773 79d529c 4a4a0a9 adcaa2b 95117cd 0b07a42 f829331 0b07a42 2980f51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import io
import json
import re
import gradio as gr
import pandas as pd
import plotly
import plotly.express as px
from pandas.api.types import is_numeric_dtype
from pipeline.config import LLMBoardConfig, QueriesConfig
README = """
Projects compares different large language models and their providers for real time applications and mass data processing.
While other benchmarks compare LLMs on different human intelligence tasks this benchmark focus on features related to business and engineering aspects such as response times, pricing and data streaming capabilities.
To preform evaluation we chose a task of newspaper articles summarization from [GEM/xlsum](https://huggingface.co/datasets/GEM/xlsum) dataset as it represents a very standard type of task where model has to understand unstructured natural language text, process it and output text in a specified format.
For this version we chose English, Polish and Japanese languages, with Japanese representing languages using logographic alphabets. This enable us also validate the effectiveness of the LLM for different language groups.
Each of the models was asked to summarize the text using the following prompt:
```
{}
```
Where {{language}} stands for original language of the text as we wanted to avoid the model translating the text to English during summarization.
LLM was asked to return the output in three formats: markdown, json and function call. Note that currently function calls are only supported by Open AI API.
To do that we added following text to the query:
{}
All of the call were made from the same machine with the same internet connection with usage of the LiteLLM library which may adds some time overhead compared to pure curl calls. Call were made from Poland, UTC +1.
Please take a look at the following project and let us know if you have any questions or suggestions.
"""
time_periods_explanation_df = pd.DataFrame(
{
"time_of_day": [
"early morning",
"morning",
"afternoon",
"late afternoon",
"evening",
"late evening",
"midnight",
"night",
],
"hour_range": ["6-8", "9-11", "12-14", "15-17", "18-20", "21-23", "0-2", "3-5"],
}
)
queries_config = QueriesConfig()
output_types_df = pd.DataFrame(
{"Output Type": queries_config.query_template.keys(), "Added text": queries_config.query_template.values()}
)
summary_df: pd.DataFrame = pd.read_csv("data/2024-02-05 23:33:22.947120_summary.csv")
time_of_day_comparison_df = pd.read_csv("data/2024-02-06 09:49:19.637072_time_of_day_comparison.csv")
general_plots = pd.read_csv("data/general_plots.csv")
model_costs_df = pd.read_csv("data/2024-02-05 12:03:45.281624_model_costs.csv")
time_of_day_plots = pd.read_csv("data/time_of_day_plots.csv")
output_plots = pd.read_csv("data/output_plots.csv")
searched_query = ""
collapse_languages = False
collapse_output_method = False
def filter_dataframes(input: str):
global searched_query
input = input.lower()
searched_query = input
return dataframes()
def collapse_languages_toggle():
global collapse_languages
if collapse_languages:
collapse_languages = False
button_text = "Collapse languages"
else:
collapse_languages = True
button_text = "Un-collapse languages"
return dataframes()[0], button_text
def collapse_output_method_toggle():
global collapse_output_method
if collapse_output_method:
collapse_output_method = False
button_text = "Collapse output method"
else:
collapse_output_method = True
button_text = "Un-collapse output method"
return dataframes()[0], button_text
def dataframes():
global collapse_languages, collapse_output_method, searched_query, summary_df, time_of_day_comparison_df, model_costs_df
summary_df_columns = summary_df.columns.to_list()
group_columns = LLMBoardConfig().group_columns.copy()
if collapse_languages:
summary_df_columns.remove("language")
group_columns.remove("language")
if collapse_output_method:
summary_df_columns.remove("template_name")
group_columns.remove("template_name")
summary_df_processed = summary_df[summary_df_columns].groupby(by=group_columns).mean().reset_index()
searched_model_names = searched_query.split("|")
searched_model_names = [n.lower().strip() for n in searched_model_names]
searched_model_names = [n for n in searched_model_names if n]
def for_dataframe(df):
if not searched_model_names:
return df
return dataframe_style(pd.concat(df[df.model.str.lower().str.contains(n)] for n in searched_model_names))
return (
for_dataframe(summary_df_processed),
for_dataframe(time_of_day_comparison_df),
for_dataframe(model_costs_df),
)
def dataframe_style(df: pd.DataFrame):
df = df.copy()
df.columns = [snake_case_to_title(column) for column in df.columns]
column_formats = {}
for column in df.columns:
if is_numeric_dtype(df[column]):
if column == "execution_time":
column_formats[column] = "{:.4f}"
else:
column_formats[column] = "{:.2f}"
df = df.style.format(column_formats, na_rep="")
return df
def snake_case_to_title(text):
# Convert snake_case to title-case
words = re.split(r"_", text)
title_words = [word.capitalize() for word in words]
return " ".join(title_words)
filter_textbox = gr.Textbox(label="Model name parts *", scale=2)
filter_button = gr.Button("Filter", scale=1)
collapse_languages_button = gr.Button("Collapse languages")
collapse_output_method_button = gr.Button("Collapse output method")
last_textbox = 0
plots = []
single_model_plots = []
def filter_plots(searched_query: str):
searched_model_names = searched_query.split("|")
searched_model_names = [n.lower().strip() for n in searched_model_names]
searched_model_names = [n for n in searched_model_names if n]
def filter_dataframe(df):
if not searched_model_names:
return df
return pd.concat(df[df.model.str.lower().str.contains(n)] for n in searched_model_names)
results = []
for plot_display, plot, row in plots:
visible = True
if "df" in row and pd.notna(row["df"]):
buffer = io.StringIO(row["df"])
df = pd.read_csv(buffer)
df = filter_dataframe(df)
plot = px.bar(df, **json.loads(row["arguments"]))
plot.update_layout(autosize=True)
elif "for model" in row["header"] and searched_model_names:
plot_model = row["header"].split("for model")[1].lower()
if not any(n in plot_model for n in searched_model_names):
visible = False
results.append(gr.Plot(plot, visible=visible))
return results
def display_plot(plot_df_row):
row = dict(plot_df_row)
plot = plotly.io.from_json(row["plot_json"])
plot.update_layout(autosize=True)
plots.append((gr.Plot(plot, label=row["header"], scale=1), plot, row))
if "description" in row and pd.notna(row["description"]):
gr.Markdown(str(row["description"]))
with gr.Blocks() as demo:
gr.HTML("<h1>Performance LLM Board</h1>")
with gr.Row():
filter_textbox.render()
filter_button.render()
gr.Markdown(
' \* You can use `|` operator to display multiple models at once, for example "gpt|mistral|zephyr"'
)
with gr.Tab("About this project"):
gr.Markdown(
README.format(
queries_config.base_query_template.replace("```", "'''"), output_types_df.to_markdown(index=False)
)
)
with gr.Tab("Performance by time of the day"):
# display only first plot for all models
time_of_day_plots[0:1].apply(display_plot, axis=1)
time_periods_explanation_ui = gr.DataFrame(
dataframe_style(time_periods_explanation_df), label="Times of day ranges"
)
time_of_day_comparison_ui = gr.DataFrame(dataframe_style(time_of_day_comparison_df), label="Time of day")
gr.Markdown(
"""\
These measurements were made by testing the models using the same dataset as in the other comparisons every hour for 24 hours.
Execution time refers to averaged time needed to execute one query.
Hours and times of day in the table and in the plot are based on Central European Time.
Measurements were made during a normal work week.
"""
)
# display rest of the plots
time_of_day_plots[1:].apply(display_plot, axis=1)
with gr.Tab("Output characteristics"):
with gr.Row():
collapse_languages_button.render()
collapse_output_method_button.render()
summary_ui = gr.DataFrame(dataframe_style(summary_df), label="Output characteristics")
gr.Markdown(
"""\
This table compares output characteristics of different models which include execution time, output size and chunking of the output. Some providers and models don't support output chunking, in this case chunk related fields are left empty.
Execution time refers to averaged time needed to execute one query.
To count words we split the output string by whitespace `\w` regex character.
Chunk sizes are measured in the characters count."""
)
output_plots.apply(display_plot, axis=1)
with gr.Tab("Costs comparison"):
models_costs_ui = gr.DataFrame(dataframe_style(model_costs_df), label="Costs comparison")
gr.Markdown(
"""\
Provider pricing column contains pricing from the website of the provider.
Hugging Face Inference Endpoints are charged by hour so to compare different providers together,
for models hosted this way we calculated "Cost Per Token" column using data collected during the experiment.
Note that pause and resume time cost was not included in the "Cost Per Token" column calculation.
"""
)
general_plots[general_plots.plot_name == "execution_costs"].apply(display_plot, axis=1)
with gr.Tab("Context length and parameters count"):
general_plots[general_plots.plot_name != "execution_costs"].apply(display_plot, axis=1)
gr.Markdown(
"""
LLM models context length and parameters count are based on release blogs and documentation of their respective developers.
A lot of models had to be omitted due to their developers not disclosing their parameters count.
Mainly OpenAI's GPT models and Google's Palm 2.
"""
)
filter_button.click(
fn=filter_dataframes,
inputs=filter_textbox,
outputs=[summary_ui, time_of_day_comparison_ui, models_costs_ui],
api_name="filter_dataframes",
)
filter_textbox.submit(
fn=filter_dataframes,
inputs=filter_textbox,
outputs=[summary_ui, time_of_day_comparison_ui, models_costs_ui],
api_name="filter_dataframes",
)
filter_button.click(
fn=filter_plots,
inputs=filter_textbox,
outputs=[v[0] for v in plots],
api_name="filter_plots",
)
filter_textbox.submit(
fn=filter_plots,
inputs=filter_textbox,
outputs=[v[0] for v in plots],
api_name="filter_plots",
)
collapse_languages_button.click(
fn=collapse_languages_toggle,
outputs=[summary_ui, collapse_languages_button],
api_name="collapse_languages_toggle",
)
collapse_output_method_button.click(
fn=collapse_output_method_toggle,
outputs=[summary_ui, collapse_output_method_button],
api_name="collapse_output_method_toggle",
)
demo.launch(share=True)
|