File size: 24,591 Bytes
0e6d684
 
 
 
7054d9b
0e6d684
 
 
 
 
 
a1c932a
 
 
 
99cd6de
 
0e6d684
 
 
 
99cd6de
0e6d684
 
a1c932a
0e6d684
a1c932a
 
0e6d684
 
 
 
 
 
 
 
 
a1c932a
 
0e6d684
a1c932a
0e6d684
a1c932a
 
 
 
0e6d684
 
a1c932a
 
 
0e6d684
 
 
 
a1c932a
 
 
 
 
 
 
0e6d684
 
a1c932a
 
0e6d684
 
a1c932a
0e6d684
a1c932a
 
0e6d684
 
 
a1c932a
0e6d684
 
 
a1c932a
 
 
 
0e6d684
 
 
a1c932a
 
 
 
 
 
 
0e6d684
 
 
27aaaa5
a1c932a
 
 
 
 
0e6d684
 
 
 
a1c932a
0e6d684
 
a1c932a
 
 
 
 
 
 
 
 
0e6d684
 
a1c932a
0e6d684
a1c932a
0e6d684
a1c932a
0e6d684
 
 
 
 
 
 
a1c932a
0e6d684
 
 
 
 
 
 
 
a1c932a
 
 
 
 
 
 
e15d2e5
0e6d684
a1c932a
0e6d684
 
 
a1c932a
 
 
 
 
0e6d684
 
 
 
a1c932a
0e6d684
a1c932a
 
 
0e6d684
a1c932a
 
 
 
 
0e6d684
 
a1c932a
0e6d684
a1c932a
0e6d684
 
 
 
 
 
 
 
 
 
 
 
a1c932a
 
0e6d684
 
 
 
 
 
 
a1c932a
 
 
 
 
 
 
0e6d684
a1c932a
0e6d684
 
 
 
 
 
 
 
 
 
 
a1c932a
 
 
 
 
 
 
 
 
 
 
 
 
0e6d684
 
 
 
 
a1c932a
 
0e6d684
 
a1c932a
 
 
 
 
 
 
 
 
 
 
 
 
0e6d684
 
a1c932a
 
 
 
 
 
 
0e6d684
 
 
 
 
 
 
 
 
 
 
a1c932a
 
 
 
 
 
 
 
 
 
 
 
 
0e6d684
 
 
 
 
a1c932a
 
0e6d684
 
a1c932a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e6d684
 
 
 
 
 
 
 
 
 
 
a1c932a
0e6d684
 
 
a1c932a
0e6d684
 
 
 
 
 
a1c932a
b7016df
0e6d684
a1c932a
 
 
0e6d684
 
 
 
 
 
 
 
 
 
 
 
a1c932a
 
 
 
 
 
0e6d684
 
 
 
99cd6de
0e6d684
 
 
a1c932a
 
 
 
 
 
0e6d684
a1c932a
0e6d684
 
 
a1c932a
0e6d684
a1c932a
 
 
 
 
0e6d684
a1c932a
 
0e6d684
 
 
 
 
 
 
 
 
 
 
 
 
 
a1c932a
 
 
0e6d684
a1c932a
 
 
 
0e6d684
 
a1c932a
 
 
 
 
 
d72c9a4
24bf6bb
0e6d684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72c9a4
0e6d684
24bf6bb
0e6d684
 
 
 
a1c932a
 
0e6d684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1c932a
 
 
 
 
0e6d684
 
 
 
 
a1c932a
0e6d684
a1c932a
 
0e6d684
a1c932a
 
0e6d684
a1c932a
 
 
 
0e6d684
 
 
 
a1c932a
 
0e6d684
a1c932a
 
0e6d684
a1c932a
0e6d684
 
 
 
a1c932a
 
0e6d684
 
a1c932a
0e6d684
a1c932a
 
 
0e6d684
 
 
a1c932a
 
 
 
 
 
 
 
0e6d684
 
a1c932a
0e6d684
a1c932a
0e6d684
 
 
a1c932a
0e6d684
 
 
 
a1c932a
 
 
 
 
0e6d684
a1c932a
0e6d684
a1c932a
 
 
 
 
 
0e6d684
 
 
 
 
 
 
 
a1c932a
 
0e6d684
 
 
 
 
 
 
a1c932a
 
0e6d684
 
 
 
 
 
 
a1c932a
 
0e6d684
 
 
 
 
 
 
 
 
a1c932a
0e6d684
a1c932a
 
 
 
 
 
 
 
 
 
0e6d684
a1c932a
 
 
 
 
 
 
0e6d684
a1c932a
 
 
 
 
 
77b6d2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
"""
utils.py

This module contains utility functions for:
 - Loading and processing images#
 - Object detection with YOLO
 - OCR with EasyOCR / PaddleOCR
 - Image annotation and bounding box manipulation
 - Captioning / semantic parsing of detected icons
"""

import os
import io
import base64
import time
import json
import sys
import re
from typing import Tuple, List

import torch
import numpy as np
import cv2
from PIL import Image, ImageDraw, ImageFont
from matplotlib import pyplot as plt

import easyocr
from paddleocr import PaddleOCR
import supervision as sv
import torchvision.transforms as T
from torchvision.transforms import ToPILImage
from torchvision.ops import box_convert

# Optional: import AzureOpenAI if used
from openai import AzureOpenAI

# Initialize OCR readers
reader = easyocr.Reader(['en'])
paddle_ocr = PaddleOCR(
    lang='en',  # other languages available
    use_angle_cls=False,
    use_gpu=False,  # using cuda might conflict with PyTorch in the same process
    show_log=False,
    max_batch_size=1024,
    use_dilation=True,  # improves accuracy
    det_db_score_mode='slow',  # improves accuracy
    rec_batch_num=1024
)


def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None):
    """
    Loads the captioning model and processor.
    Supports either BLIP2 or Florence-2 models.
    """
    if not device:
        device = "cuda" if torch.cuda.is_available() else "cpu"
    if model_name == "blip2":
        from transformers import Blip2Processor, Blip2ForConditionalGeneration
        processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
        if device == 'cpu':
            model = Blip2ForConditionalGeneration.from_pretrained(
                model_name_or_path, device_map=None, torch_dtype=torch.float32
            )
        else:
            model = Blip2ForConditionalGeneration.from_pretrained(
                model_name_or_path, device_map=None, torch_dtype=torch.float16
            ).to(device)
    elif model_name == "florence2":
        from transformers import AutoProcessor, AutoModelForCausalLM
        processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
        if device == 'cpu':
            model = AutoModelForCausalLM.from_pretrained(
                model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True
            )
        else:
            model = AutoModelForCausalLM.from_pretrained(
                model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True
            ).to(device)
    return {'model': model.to(device), 'processor': processor}


def get_yolo_model(model_path):
    """
    Loads a YOLO model from a given model_path using ultralytics.
    """
    from ultralytics import YOLO
    model = YOLO(model_path)
    return model


@torch.inference_mode()
def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=None, batch_size=32):
    # Ensure batch_size is an integer
    if batch_size is None:
        batch_size = 32

    to_pil = ToPILImage()
    if starting_idx:
        non_ocr_boxes = filtered_boxes[starting_idx:]
    else:
        non_ocr_boxes = filtered_boxes
    cropped_pil_images = []
    for coord in non_ocr_boxes:
        xmin, xmax = int(coord[0] * image_source.shape[1]), int(coord[2] * image_source.shape[1])
        ymin, ymax = int(coord[1] * image_source.shape[0]), int(coord[3] * image_source.shape[0])
        cropped_image = image_source[ymin:ymax, xmin:xmax, :]
        cropped_pil_images.append(to_pil(cropped_image))
    
    model, processor = caption_model_processor['model'], caption_model_processor['processor']
    if not prompt:
        if 'florence' in model.config.name_or_path:
            prompt = "<CAPTION>"
        else:
            prompt = "The image shows"
    
    generated_texts = []
    device = model.device
    for i in range(0, len(cropped_pil_images), batch_size):
        batch = cropped_pil_images[i:i + batch_size]
        if model.device.type == 'cuda':
            inputs = processor(images=batch, text=[prompt] * len(batch), return_tensors="pt").to(device=device, dtype=torch.float16)
        else:
            inputs = processor(images=batch, text=[prompt] * len(batch), return_tensors="pt").to(device=device)
        if 'florence' in model.config.name_or_path:
            generated_ids = model.generate(
                input_ids=inputs["input_ids"],
                pixel_values=inputs["pixel_values"],
                max_new_tokens=100,
                num_beams=3,
                do_sample=False
            )
        else:
            generated_ids = model.generate(
                **inputs,
                max_length=100,
                num_beams=5,
                no_repeat_ngram_size=2,
                early_stopping=True,
                num_return_sequences=1
            )
        generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
        generated_text = [gen.strip() for gen in generated_text]
        generated_texts.extend(generated_text)
    
    return generated_texts




def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor):
    """
    Generates parsed textual content for detected icons using the phi3_v model variant.
    """
    to_pil = ToPILImage()
    if ocr_bbox:
        non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
    else:
        non_ocr_boxes = filtered_boxes
    cropped_pil_images = []
    for coord in non_ocr_boxes:
        xmin, xmax = int(coord[0] * image_source.shape[1]), int(coord[2] * image_source.shape[1])
        ymin, ymax = int(coord[1] * image_source.shape[0]), int(coord[3] * image_source.shape[0])
        cropped_image = image_source[ymin:ymax, xmin:xmax, :]
        cropped_pil_images.append(to_pil(cropped_image))

    model, processor = caption_model_processor['model'], caption_model_processor['processor']
    device = model.device
    messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}]
    prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

    batch_size = 5  # Number of samples per batch
    generated_texts = []

    for i in range(0, len(cropped_pil_images), batch_size):
        images = cropped_pil_images[i:i+batch_size]
        image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images]
        inputs = {'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []}
        texts = [prompt] * len(images)
        for idx, txt in enumerate(texts):
            inp = processor._convert_images_texts_to_inputs(image_inputs[idx], txt, return_tensors="pt")
            inputs['input_ids'].append(inp['input_ids'])
            inputs['attention_mask'].append(inp['attention_mask'])
            inputs['pixel_values'].append(inp['pixel_values'])
            inputs['image_sizes'].append(inp['image_sizes'])
        max_len = max(x.shape[1] for x in inputs['input_ids'])
        for idx, v in enumerate(inputs['input_ids']):
            pad_tensor = processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long)
            inputs['input_ids'][idx] = torch.cat([pad_tensor, v], dim=1)
            pad_att = torch.zeros(1, max_len - v.shape[1], dtype=torch.long)
            inputs['attention_mask'][idx] = torch.cat([pad_att, inputs['attention_mask'][idx]], dim=1)
        inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()}

        generation_args = {
            "max_new_tokens": 25,
            "temperature": 0.01,
            "do_sample": False,
        }
        generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
        # Remove input tokens from the generated sequence
        generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:]
        response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
        response = [res.strip('\n').strip() for res in response]
        generated_texts.extend(response)

    return generated_texts


def remove_overlap(boxes, iou_threshold, ocr_bbox=None):
    """
    Removes overlapping bounding boxes based on IoU and optionally considers OCR boxes.
    
    Args:
        boxes: Tensor of bounding boxes (in xyxy format).
        iou_threshold: IoU threshold to determine overlaps.
        ocr_bbox: Optional list of OCR bounding boxes.
    
    Returns:
        Filtered boxes as a torch.Tensor.
    """
    assert ocr_bbox is None or isinstance(ocr_bbox, List)

    def box_area(box):
        return (box[2] - box[0]) * (box[3] - box[1])

    def intersection_area(box1, box2):
        x1 = max(box1[0], box2[0])
        y1 = max(box1[1], box2[1])
        x2 = min(box1[2], box2[2])
        y2 = min(box1[3], box2[3])
        return max(0, x2 - x1) * max(0, y2 - y1)

    def IoU(box1, box2):
        inter = intersection_area(box1, box2)
        union = box_area(box1) + box_area(box2) - inter + 1e-6
        ratio1 = inter / box_area(box1) if box_area(box1) > 0 else 0
        ratio2 = inter / box_area(box2) if box_area(box2) > 0 else 0
        return max(inter / union, ratio1, ratio2)

    def is_inside(box1, box2):
        inter = intersection_area(box1, box2)
        return (inter / box_area(box1)) > 0.95

    boxes = boxes.tolist()
    filtered_boxes = []
    if ocr_bbox:
        filtered_boxes.extend(ocr_bbox)
    for i, box1 in enumerate(boxes):
        is_valid_box = True
        for j, box2 in enumerate(boxes):
            if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
                is_valid_box = False
                break
        if is_valid_box:
            if ocr_bbox:
                # Only add the box if it does not overlap with any OCR box
                if not any(IoU(box1, box3) > iou_threshold and not is_inside(box1, box3) for box3 in ocr_bbox):
                    filtered_boxes.append(box1)
            else:
                filtered_boxes.append(box1)
    return torch.tensor(filtered_boxes)


def remove_overlap_new(boxes, iou_threshold, ocr_bbox=None):
    """
    Removes overlapping boxes with OCR priority.
    
    Args:
        boxes: List of dictionaries, each with keys: 'type', 'bbox', 'interactivity', 'content'.
        iou_threshold: IoU threshold for removal.
        ocr_bbox: List of OCR box dictionaries.
    
    Returns:
        A list of filtered box dictionaries.
    """
    assert ocr_bbox is None or isinstance(ocr_bbox, List)

    def box_area(box):
        return (box[2] - box[0]) * (box[3] - box[1])

    def intersection_area(box1, box2):
        x1 = max(box1[0], box2[0])
        y1 = max(box1[1], box2[1])
        x2 = min(box1[2], box2[2])
        y2 = min(box1[3], box2[3])
        return max(0, x2 - x1) * max(0, y2 - y1)

    def IoU(box1, box2):
        inter = intersection_area(box1, box2)
        union = box_area(box1) + box_area(box2) - inter + 1e-6
        ratio1 = inter / box_area(box1) if box_area(box1) > 0 else 0
        ratio2 = inter / box_area(box2) if box_area(box2) > 0 else 0
        return max(inter / union, ratio1, ratio2)

    def is_inside(box1, box2):
        inter = intersection_area(box1, box2)
        return (inter / box_area(box1)) > 0.80

    filtered_boxes = []
    if ocr_bbox:
        filtered_boxes.extend(ocr_bbox)
    for i, box1_elem in enumerate(boxes):
        box1 = box1_elem['bbox']
        is_valid_box = True
        for j, box2_elem in enumerate(boxes):
            box2 = box2_elem['bbox']
            if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
                is_valid_box = False
                break
        if is_valid_box:
            if ocr_bbox:
                box_added = False
                for box3_elem in ocr_bbox:
                    box3 = box3_elem['bbox']
                    if is_inside(box3, box1):
                        try:
                            filtered_boxes.append({
                                'type': 'text',
                                'bbox': box1_elem['bbox'],
                                'interactivity': True,
                                'content': box3_elem['content']
                            })
                            filtered_boxes.remove(box3_elem)
                        except Exception:
                            continue
                    elif is_inside(box1, box3):
                        box_added = True
                        break
                if not box_added:
                    filtered_boxes.append({
                        'type': 'icon',
                        'bbox': box1_elem['bbox'],
                        'interactivity': True,
                        'content': None
                    })
            else:
                filtered_boxes.append(box1)
    return filtered_boxes  # Optionally, you could return torch.tensor(filtered_boxes) if needed


def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
    """
    Loads an image and applies transformations.
    
    Returns:
        image: Original image as a NumPy array.
        image_transformed: Transformed tensor.
    """
    transform = T.Compose([
        T.RandomResize([800], max_size=1333),
        T.ToTensor(),
        T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ])
    image_source = Image.open(image_path).convert("RGB")
    image = np.asarray(image_source)
    image_transformed, _ = transform(image_source, None)
    return image, image_transformed


def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str],
             text_scale: float, text_padding=5, text_thickness=2, thickness=3) -> Tuple[np.ndarray, dict]:
    """
    Annotates an image with bounding boxes and labels.
    """
    # Validate phrases input
    phrases = [str(phrase) if not isinstance(phrase, str) else phrase for phrase in phrases]

    h, w, _ = image_source.shape
    boxes = boxes * torch.Tensor([w, h, w, h])
    xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
    xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy()
    detections = sv.Detections(xyxy=xyxy)

    labels = [f"{phrase}" for phrase in phrases]

    from util.box_annotator import BoxAnnotator
    box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,
                                 text_thickness=text_thickness, thickness=thickness)
    annotated_frame = image_source.copy()
    annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w, h))

    label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)}
    return annotated_frame, label_coordinates



def predict(model, image, caption, box_threshold, text_threshold):
    """
    Uses a Hugging Face model to perform grounded object detection.
    
    Args:
        model: Dictionary with 'model' and 'processor'.
        image: Input PIL image.
        caption: Caption text.
        box_threshold: Confidence threshold for boxes.
        text_threshold: Threshold for text detection.
    
    Returns:
        boxes, logits, phrases from the detection.
    """
    model_obj, processor = model['model'], model['processor']
    device = model_obj.device

    inputs = processor(images=image, text=caption, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model_obj(**inputs)

    results = processor.post_process_grounded_object_detection(
        outputs,
        inputs.input_ids,
        box_threshold=box_threshold,
        text_threshold=text_threshold,
        target_sizes=[image.size[::-1]]
    )[0]
    boxes, logits, phrases = results["boxes"], results["scores"], results["labels"]
    return boxes, logits, phrases


def predict_yolo(model, image_path, box_threshold, imgsz, scale_img, iou_threshold=0.7):
    """
    Uses a YOLO model for object detection.
    
    Args:
        model: YOLO model instance.
        image_path: Path to the image.
        box_threshold: Confidence threshold.
        imgsz: Image size for scaling (if scale_img is True).
        scale_img: Boolean flag to scale the image.
        iou_threshold: IoU threshold for non-max suppression.
    
    Returns:
        Bounding boxes, confidence scores, and placeholder phrases.
    """
    kwargs = {
        'conf': box_threshold,  # Confidence threshold
        'iou': iou_threshold,   # IoU threshold
        'verbose': False
    }
    if scale_img:
        kwargs['imgsz'] = imgsz

    results = model.predict(image_path, **kwargs)
    boxes = results[0].boxes.xyxy
    conf = results[0].boxes.conf
    return boxes, conf, [str(i) for i in range(len(boxes))]


def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD=0.01, output_coord_in_ratio=False, ocr_bbox=None,
                        text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None,
                        ocr_text=[], use_local_semantics=True, iou_threshold=0.9, prompt=None, scale_img=False,
                        imgsz=None, batch_size=None):
    """
    Processes an image to generate semantic (SOM) labels.
    
    Args:
        img_path: Path to the image.
        model: YOLO model for detection.
        BOX_TRESHOLD: Confidence threshold for box prediction.
        output_coord_in_ratio: If True, output coordinates in ratio.
        ocr_bbox: OCR bounding boxes.
        text_scale, text_padding: Parameters for drawing annotations.
        draw_bbox_config: Custom configuration for bounding box drawing.
        caption_model_processor: Dictionary with caption model and processor.
        ocr_text: List of OCR-detected texts.
        use_local_semantics: Whether to use local semantic processing.
        iou_threshold: IoU threshold for filtering overlaps.
        prompt: Optional caption prompt.
        scale_img: Whether to scale the image.
        imgsz: Image size for YOLO.
        batch_size: Batch size for captioning.
    
    Returns:
        Encoded annotated image, label coordinates, and filtered boxes.
    """
    image_source = Image.open(img_path).convert("RGB")
    w, h = image_source.size
    if not imgsz:
        imgsz = (h, w)
    # Run YOLO detection
    xyxy, logits, phrases = predict_yolo(
        model=model, image_path=img_path, box_threshold=BOX_TRESHOLD,
        imgsz=imgsz, scale_img=scale_img, iou_threshold=0.1
    )
    xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device)
    image_source_np = np.asarray(image_source)
    phrases = [str(i) for i in range(len(phrases))]

    # Process OCR bounding boxes (if any)
    if ocr_bbox:
        ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h])
        ocr_bbox = ocr_bbox.tolist()
    else:
        print('no ocr bbox!!!')
        ocr_bbox = None

    ocr_bbox_elem = [{'type': 'text', 'bbox': box, 'interactivity': False, 'content': txt}
                     for box, txt in zip(ocr_bbox, ocr_text)]
    xyxy_elem = [{'type': 'icon', 'bbox': box, 'interactivity': True, 'content': None}
                 for box in xyxy.tolist()]
    filtered_boxes = remove_overlap_new(boxes=xyxy_elem, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox_elem)
    
    # Sort filtered boxes so that boxes with 'content' == None are at the end
    filtered_boxes_elem = sorted(filtered_boxes, key=lambda x: x['content'] is None)
    starting_idx = next((i for i, box in enumerate(filtered_boxes_elem) if box['content'] is None), -1)
    filtered_boxes_tensor = torch.tensor([box['bbox'] for box in filtered_boxes_elem])

    if batch_size is None:
        batch_size = 32

    # Generate parsed icon semantics if required
    if use_local_semantics:
        caption_model = caption_model_processor['model']
        if 'phi3_v' in caption_model.config.model_type:
            parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes_tensor, ocr_bbox, image_source_np, caption_model_processor)
        else:
            parsed_content_icon = get_parsed_content_icon(filtered_boxes_tensor, starting_idx, image_source_np, caption_model_processor, prompt=prompt, batch_size=batch_size)
        ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
        icon_start = len(ocr_text)
        parsed_content_icon_ls = []
        # Fill boxes with no OCR content with parsed icon content
        for box in filtered_boxes_elem:
            if box['content'] is None and parsed_content_icon:
                box['content'] = parsed_content_icon.pop(0)
        for i, txt in enumerate(parsed_content_icon):
            parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}")
        parsed_content_merged = ocr_text + parsed_content_icon_ls
    else:
        ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
        parsed_content_merged = ocr_text

    filtered_boxes_cxcywh = box_convert(boxes=filtered_boxes_tensor, in_fmt="xyxy", out_fmt="cxcywh")
    phrases = [i for i in range(len(filtered_boxes_cxcywh))]
    
    # Annotate image with bounding boxes and labels
    if draw_bbox_config:
        annotated_frame, label_coordinates = annotate(
            image_source=image_source_np, boxes=filtered_boxes_cxcywh, logits=logits, phrases=phrases, **draw_bbox_config
        )
    else:
        annotated_frame, label_coordinates = annotate(
            image_source=image_source_np, boxes=filtered_boxes_cxcywh, logits=logits, phrases=phrases,
            text_scale=text_scale, text_padding=text_padding
        )
    
    pil_img = Image.fromarray(annotated_frame)
    buffered = io.BytesIO()
    pil_img.save(buffered, format="PNG")
    encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii')
    
    if output_coord_in_ratio:
        label_coordinates = {k: [v[0] / w, v[1] / h, v[2] / w, v[3] / h] for k, v in label_coordinates.items()}
        assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0]

    return encoded_image, label_coordinates, filtered_boxes_elem


def get_xywh(input):
    """
    Converts a bounding box from a list of two points into (x, y, width, height).
    """
    x, y = input[0][0], input[0][1]
    w = input[2][0] - input[0][0]
    h = input[2][1] - input[0][1]
    return int(x), int(y), int(w), int(h)


def get_xyxy(input):
    """
    Converts a bounding box from a list of two points into (x, y, x2, y2).
    """
    x, y = input[0][0], input[0][1]
    x2, y2 = input[2][0], input[2][1]
    return int(x), int(y), int(x2), int(y2)


def get_xywh_yolo(input):
    """
    Converts a YOLO-style bounding box (x1, y1, x2, y2) into (x, y, width, height).
    """
    x, y = input[0], input[1]
    w = input[2] - input[0]
    h = input[3] - input[1]
    return int(x), int(y), int(w), int(h)


def check_ocr_box(image_path, display_img=True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False):
    """
    Runs OCR on the given image using PaddleOCR or EasyOCR and optionally displays annotated results.
    
    Returns:
        A tuple containing:
            - A tuple (text, bounding boxes)
            - The goal_filtering parameter (unchanged)
    """
    if use_paddleocr:
        text_threshold = 0.5 if easyocr_args is None else easyocr_args.get('text_threshold', 0.5)
        result = paddle_ocr.ocr(image_path, cls=False)[0]
        conf = [item[1] for item in result]
        coord = [item[0] for item in result if item[1][1] > text_threshold]
        text = [item[1][0] for item in result if item[1][1] > text_threshold]
    else:  # EasyOCR
        if easyocr_args is None:
            easyocr_args = {}
        result = reader.readtext(image_path, **easyocr_args)
        coord = [item[0] for item in result]
        text = [item[1] for item in result]
    
    if display_img:
        opencv_img = cv2.imread(image_path)
        opencv_img = cv2.cvtColor(opencv_img, cv2.COLOR_RGB2BGR)
        bb = []
        for item in coord:
            x, y, a, b = get_xywh(item)
            bb.append((x, y, a, b))
            cv2.rectangle(opencv_img, (x, y), (x + a, y + b), (0, 255, 0), 2)
        plt.imshow(opencv_img)
    else:
        if output_bb_format == 'xywh':
            bb = [get_xywh(item) for item in coord]
        elif output_bb_format == 'xyxy':
            bb = [get_xyxy(item) for item in coord]
    return (text, bb), goal_filtering #