Spaces:
Running
on
T4
Running
on
T4
File size: 24,591 Bytes
0e6d684 7054d9b 0e6d684 a1c932a 99cd6de 0e6d684 99cd6de 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 27aaaa5 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a e15d2e5 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a b7016df 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 99cd6de 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a d72c9a4 24bf6bb 0e6d684 d72c9a4 0e6d684 24bf6bb 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 0e6d684 a1c932a 77b6d2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
"""
utils.py
This module contains utility functions for:
- Loading and processing images#
- Object detection with YOLO
- OCR with EasyOCR / PaddleOCR
- Image annotation and bounding box manipulation
- Captioning / semantic parsing of detected icons
"""
import os
import io
import base64
import time
import json
import sys
import re
from typing import Tuple, List
import torch
import numpy as np
import cv2
from PIL import Image, ImageDraw, ImageFont
from matplotlib import pyplot as plt
import easyocr
from paddleocr import PaddleOCR
import supervision as sv
import torchvision.transforms as T
from torchvision.transforms import ToPILImage
from torchvision.ops import box_convert
# Optional: import AzureOpenAI if used
from openai import AzureOpenAI
# Initialize OCR readers
reader = easyocr.Reader(['en'])
paddle_ocr = PaddleOCR(
lang='en', # other languages available
use_angle_cls=False,
use_gpu=False, # using cuda might conflict with PyTorch in the same process
show_log=False,
max_batch_size=1024,
use_dilation=True, # improves accuracy
det_db_score_mode='slow', # improves accuracy
rec_batch_num=1024
)
def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None):
"""
Loads the captioning model and processor.
Supports either BLIP2 or Florence-2 models.
"""
if not device:
device = "cuda" if torch.cuda.is_available() else "cpu"
if model_name == "blip2":
from transformers import Blip2Processor, Blip2ForConditionalGeneration
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
if device == 'cpu':
model = Blip2ForConditionalGeneration.from_pretrained(
model_name_or_path, device_map=None, torch_dtype=torch.float32
)
else:
model = Blip2ForConditionalGeneration.from_pretrained(
model_name_or_path, device_map=None, torch_dtype=torch.float16
).to(device)
elif model_name == "florence2":
from transformers import AutoProcessor, AutoModelForCausalLM
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
if device == 'cpu':
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True
).to(device)
return {'model': model.to(device), 'processor': processor}
def get_yolo_model(model_path):
"""
Loads a YOLO model from a given model_path using ultralytics.
"""
from ultralytics import YOLO
model = YOLO(model_path)
return model
@torch.inference_mode()
def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=None, batch_size=32):
# Ensure batch_size is an integer
if batch_size is None:
batch_size = 32
to_pil = ToPILImage()
if starting_idx:
non_ocr_boxes = filtered_boxes[starting_idx:]
else:
non_ocr_boxes = filtered_boxes
cropped_pil_images = []
for coord in non_ocr_boxes:
xmin, xmax = int(coord[0] * image_source.shape[1]), int(coord[2] * image_source.shape[1])
ymin, ymax = int(coord[1] * image_source.shape[0]), int(coord[3] * image_source.shape[0])
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
cropped_pil_images.append(to_pil(cropped_image))
model, processor = caption_model_processor['model'], caption_model_processor['processor']
if not prompt:
if 'florence' in model.config.name_or_path:
prompt = "<CAPTION>"
else:
prompt = "The image shows"
generated_texts = []
device = model.device
for i in range(0, len(cropped_pil_images), batch_size):
batch = cropped_pil_images[i:i + batch_size]
if model.device.type == 'cuda':
inputs = processor(images=batch, text=[prompt] * len(batch), return_tensors="pt").to(device=device, dtype=torch.float16)
else:
inputs = processor(images=batch, text=[prompt] * len(batch), return_tensors="pt").to(device=device)
if 'florence' in model.config.name_or_path:
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=100,
num_beams=3,
do_sample=False
)
else:
generated_ids = model.generate(
**inputs,
max_length=100,
num_beams=5,
no_repeat_ngram_size=2,
early_stopping=True,
num_return_sequences=1
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
generated_text = [gen.strip() for gen in generated_text]
generated_texts.extend(generated_text)
return generated_texts
def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor):
"""
Generates parsed textual content for detected icons using the phi3_v model variant.
"""
to_pil = ToPILImage()
if ocr_bbox:
non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
else:
non_ocr_boxes = filtered_boxes
cropped_pil_images = []
for coord in non_ocr_boxes:
xmin, xmax = int(coord[0] * image_source.shape[1]), int(coord[2] * image_source.shape[1])
ymin, ymax = int(coord[1] * image_source.shape[0]), int(coord[3] * image_source.shape[0])
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
cropped_pil_images.append(to_pil(cropped_image))
model, processor = caption_model_processor['model'], caption_model_processor['processor']
device = model.device
messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}]
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
batch_size = 5 # Number of samples per batch
generated_texts = []
for i in range(0, len(cropped_pil_images), batch_size):
images = cropped_pil_images[i:i+batch_size]
image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images]
inputs = {'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []}
texts = [prompt] * len(images)
for idx, txt in enumerate(texts):
inp = processor._convert_images_texts_to_inputs(image_inputs[idx], txt, return_tensors="pt")
inputs['input_ids'].append(inp['input_ids'])
inputs['attention_mask'].append(inp['attention_mask'])
inputs['pixel_values'].append(inp['pixel_values'])
inputs['image_sizes'].append(inp['image_sizes'])
max_len = max(x.shape[1] for x in inputs['input_ids'])
for idx, v in enumerate(inputs['input_ids']):
pad_tensor = processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long)
inputs['input_ids'][idx] = torch.cat([pad_tensor, v], dim=1)
pad_att = torch.zeros(1, max_len - v.shape[1], dtype=torch.long)
inputs['attention_mask'][idx] = torch.cat([pad_att, inputs['attention_mask'][idx]], dim=1)
inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()}
generation_args = {
"max_new_tokens": 25,
"temperature": 0.01,
"do_sample": False,
}
generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
# Remove input tokens from the generated sequence
generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
response = [res.strip('\n').strip() for res in response]
generated_texts.extend(response)
return generated_texts
def remove_overlap(boxes, iou_threshold, ocr_bbox=None):
"""
Removes overlapping bounding boxes based on IoU and optionally considers OCR boxes.
Args:
boxes: Tensor of bounding boxes (in xyxy format).
iou_threshold: IoU threshold to determine overlaps.
ocr_bbox: Optional list of OCR bounding boxes.
Returns:
Filtered boxes as a torch.Tensor.
"""
assert ocr_bbox is None or isinstance(ocr_bbox, List)
def box_area(box):
return (box[2] - box[0]) * (box[3] - box[1])
def intersection_area(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
return max(0, x2 - x1) * max(0, y2 - y1)
def IoU(box1, box2):
inter = intersection_area(box1, box2)
union = box_area(box1) + box_area(box2) - inter + 1e-6
ratio1 = inter / box_area(box1) if box_area(box1) > 0 else 0
ratio2 = inter / box_area(box2) if box_area(box2) > 0 else 0
return max(inter / union, ratio1, ratio2)
def is_inside(box1, box2):
inter = intersection_area(box1, box2)
return (inter / box_area(box1)) > 0.95
boxes = boxes.tolist()
filtered_boxes = []
if ocr_bbox:
filtered_boxes.extend(ocr_bbox)
for i, box1 in enumerate(boxes):
is_valid_box = True
for j, box2 in enumerate(boxes):
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
is_valid_box = False
break
if is_valid_box:
if ocr_bbox:
# Only add the box if it does not overlap with any OCR box
if not any(IoU(box1, box3) > iou_threshold and not is_inside(box1, box3) for box3 in ocr_bbox):
filtered_boxes.append(box1)
else:
filtered_boxes.append(box1)
return torch.tensor(filtered_boxes)
def remove_overlap_new(boxes, iou_threshold, ocr_bbox=None):
"""
Removes overlapping boxes with OCR priority.
Args:
boxes: List of dictionaries, each with keys: 'type', 'bbox', 'interactivity', 'content'.
iou_threshold: IoU threshold for removal.
ocr_bbox: List of OCR box dictionaries.
Returns:
A list of filtered box dictionaries.
"""
assert ocr_bbox is None or isinstance(ocr_bbox, List)
def box_area(box):
return (box[2] - box[0]) * (box[3] - box[1])
def intersection_area(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
return max(0, x2 - x1) * max(0, y2 - y1)
def IoU(box1, box2):
inter = intersection_area(box1, box2)
union = box_area(box1) + box_area(box2) - inter + 1e-6
ratio1 = inter / box_area(box1) if box_area(box1) > 0 else 0
ratio2 = inter / box_area(box2) if box_area(box2) > 0 else 0
return max(inter / union, ratio1, ratio2)
def is_inside(box1, box2):
inter = intersection_area(box1, box2)
return (inter / box_area(box1)) > 0.80
filtered_boxes = []
if ocr_bbox:
filtered_boxes.extend(ocr_bbox)
for i, box1_elem in enumerate(boxes):
box1 = box1_elem['bbox']
is_valid_box = True
for j, box2_elem in enumerate(boxes):
box2 = box2_elem['bbox']
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
is_valid_box = False
break
if is_valid_box:
if ocr_bbox:
box_added = False
for box3_elem in ocr_bbox:
box3 = box3_elem['bbox']
if is_inside(box3, box1):
try:
filtered_boxes.append({
'type': 'text',
'bbox': box1_elem['bbox'],
'interactivity': True,
'content': box3_elem['content']
})
filtered_boxes.remove(box3_elem)
except Exception:
continue
elif is_inside(box1, box3):
box_added = True
break
if not box_added:
filtered_boxes.append({
'type': 'icon',
'bbox': box1_elem['bbox'],
'interactivity': True,
'content': None
})
else:
filtered_boxes.append(box1)
return filtered_boxes # Optionally, you could return torch.tensor(filtered_boxes) if needed
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
"""
Loads an image and applies transformations.
Returns:
image: Original image as a NumPy array.
image_transformed: Transformed tensor.
"""
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
image_source = Image.open(image_path).convert("RGB")
image = np.asarray(image_source)
image_transformed, _ = transform(image_source, None)
return image, image_transformed
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str],
text_scale: float, text_padding=5, text_thickness=2, thickness=3) -> Tuple[np.ndarray, dict]:
"""
Annotates an image with bounding boxes and labels.
"""
# Validate phrases input
phrases = [str(phrase) if not isinstance(phrase, str) else phrase for phrase in phrases]
h, w, _ = image_source.shape
boxes = boxes * torch.Tensor([w, h, w, h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy()
detections = sv.Detections(xyxy=xyxy)
labels = [f"{phrase}" for phrase in phrases]
from util.box_annotator import BoxAnnotator
box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,
text_thickness=text_thickness, thickness=thickness)
annotated_frame = image_source.copy()
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w, h))
label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)}
return annotated_frame, label_coordinates
def predict(model, image, caption, box_threshold, text_threshold):
"""
Uses a Hugging Face model to perform grounded object detection.
Args:
model: Dictionary with 'model' and 'processor'.
image: Input PIL image.
caption: Caption text.
box_threshold: Confidence threshold for boxes.
text_threshold: Threshold for text detection.
Returns:
boxes, logits, phrases from the detection.
"""
model_obj, processor = model['model'], model['processor']
device = model_obj.device
inputs = processor(images=image, text=caption, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model_obj(**inputs)
results = processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=box_threshold,
text_threshold=text_threshold,
target_sizes=[image.size[::-1]]
)[0]
boxes, logits, phrases = results["boxes"], results["scores"], results["labels"]
return boxes, logits, phrases
def predict_yolo(model, image_path, box_threshold, imgsz, scale_img, iou_threshold=0.7):
"""
Uses a YOLO model for object detection.
Args:
model: YOLO model instance.
image_path: Path to the image.
box_threshold: Confidence threshold.
imgsz: Image size for scaling (if scale_img is True).
scale_img: Boolean flag to scale the image.
iou_threshold: IoU threshold for non-max suppression.
Returns:
Bounding boxes, confidence scores, and placeholder phrases.
"""
kwargs = {
'conf': box_threshold, # Confidence threshold
'iou': iou_threshold, # IoU threshold
'verbose': False
}
if scale_img:
kwargs['imgsz'] = imgsz
results = model.predict(image_path, **kwargs)
boxes = results[0].boxes.xyxy
conf = results[0].boxes.conf
return boxes, conf, [str(i) for i in range(len(boxes))]
def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD=0.01, output_coord_in_ratio=False, ocr_bbox=None,
text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None,
ocr_text=[], use_local_semantics=True, iou_threshold=0.9, prompt=None, scale_img=False,
imgsz=None, batch_size=None):
"""
Processes an image to generate semantic (SOM) labels.
Args:
img_path: Path to the image.
model: YOLO model for detection.
BOX_TRESHOLD: Confidence threshold for box prediction.
output_coord_in_ratio: If True, output coordinates in ratio.
ocr_bbox: OCR bounding boxes.
text_scale, text_padding: Parameters for drawing annotations.
draw_bbox_config: Custom configuration for bounding box drawing.
caption_model_processor: Dictionary with caption model and processor.
ocr_text: List of OCR-detected texts.
use_local_semantics: Whether to use local semantic processing.
iou_threshold: IoU threshold for filtering overlaps.
prompt: Optional caption prompt.
scale_img: Whether to scale the image.
imgsz: Image size for YOLO.
batch_size: Batch size for captioning.
Returns:
Encoded annotated image, label coordinates, and filtered boxes.
"""
image_source = Image.open(img_path).convert("RGB")
w, h = image_source.size
if not imgsz:
imgsz = (h, w)
# Run YOLO detection
xyxy, logits, phrases = predict_yolo(
model=model, image_path=img_path, box_threshold=BOX_TRESHOLD,
imgsz=imgsz, scale_img=scale_img, iou_threshold=0.1
)
xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device)
image_source_np = np.asarray(image_source)
phrases = [str(i) for i in range(len(phrases))]
# Process OCR bounding boxes (if any)
if ocr_bbox:
ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h])
ocr_bbox = ocr_bbox.tolist()
else:
print('no ocr bbox!!!')
ocr_bbox = None
ocr_bbox_elem = [{'type': 'text', 'bbox': box, 'interactivity': False, 'content': txt}
for box, txt in zip(ocr_bbox, ocr_text)]
xyxy_elem = [{'type': 'icon', 'bbox': box, 'interactivity': True, 'content': None}
for box in xyxy.tolist()]
filtered_boxes = remove_overlap_new(boxes=xyxy_elem, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox_elem)
# Sort filtered boxes so that boxes with 'content' == None are at the end
filtered_boxes_elem = sorted(filtered_boxes, key=lambda x: x['content'] is None)
starting_idx = next((i for i, box in enumerate(filtered_boxes_elem) if box['content'] is None), -1)
filtered_boxes_tensor = torch.tensor([box['bbox'] for box in filtered_boxes_elem])
if batch_size is None:
batch_size = 32
# Generate parsed icon semantics if required
if use_local_semantics:
caption_model = caption_model_processor['model']
if 'phi3_v' in caption_model.config.model_type:
parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes_tensor, ocr_bbox, image_source_np, caption_model_processor)
else:
parsed_content_icon = get_parsed_content_icon(filtered_boxes_tensor, starting_idx, image_source_np, caption_model_processor, prompt=prompt, batch_size=batch_size)
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
icon_start = len(ocr_text)
parsed_content_icon_ls = []
# Fill boxes with no OCR content with parsed icon content
for box in filtered_boxes_elem:
if box['content'] is None and parsed_content_icon:
box['content'] = parsed_content_icon.pop(0)
for i, txt in enumerate(parsed_content_icon):
parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}")
parsed_content_merged = ocr_text + parsed_content_icon_ls
else:
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
parsed_content_merged = ocr_text
filtered_boxes_cxcywh = box_convert(boxes=filtered_boxes_tensor, in_fmt="xyxy", out_fmt="cxcywh")
phrases = [i for i in range(len(filtered_boxes_cxcywh))]
# Annotate image with bounding boxes and labels
if draw_bbox_config:
annotated_frame, label_coordinates = annotate(
image_source=image_source_np, boxes=filtered_boxes_cxcywh, logits=logits, phrases=phrases, **draw_bbox_config
)
else:
annotated_frame, label_coordinates = annotate(
image_source=image_source_np, boxes=filtered_boxes_cxcywh, logits=logits, phrases=phrases,
text_scale=text_scale, text_padding=text_padding
)
pil_img = Image.fromarray(annotated_frame)
buffered = io.BytesIO()
pil_img.save(buffered, format="PNG")
encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii')
if output_coord_in_ratio:
label_coordinates = {k: [v[0] / w, v[1] / h, v[2] / w, v[3] / h] for k, v in label_coordinates.items()}
assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0]
return encoded_image, label_coordinates, filtered_boxes_elem
def get_xywh(input):
"""
Converts a bounding box from a list of two points into (x, y, width, height).
"""
x, y = input[0][0], input[0][1]
w = input[2][0] - input[0][0]
h = input[2][1] - input[0][1]
return int(x), int(y), int(w), int(h)
def get_xyxy(input):
"""
Converts a bounding box from a list of two points into (x, y, x2, y2).
"""
x, y = input[0][0], input[0][1]
x2, y2 = input[2][0], input[2][1]
return int(x), int(y), int(x2), int(y2)
def get_xywh_yolo(input):
"""
Converts a YOLO-style bounding box (x1, y1, x2, y2) into (x, y, width, height).
"""
x, y = input[0], input[1]
w = input[2] - input[0]
h = input[3] - input[1]
return int(x), int(y), int(w), int(h)
def check_ocr_box(image_path, display_img=True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False):
"""
Runs OCR on the given image using PaddleOCR or EasyOCR and optionally displays annotated results.
Returns:
A tuple containing:
- A tuple (text, bounding boxes)
- The goal_filtering parameter (unchanged)
"""
if use_paddleocr:
text_threshold = 0.5 if easyocr_args is None else easyocr_args.get('text_threshold', 0.5)
result = paddle_ocr.ocr(image_path, cls=False)[0]
conf = [item[1] for item in result]
coord = [item[0] for item in result if item[1][1] > text_threshold]
text = [item[1][0] for item in result if item[1][1] > text_threshold]
else: # EasyOCR
if easyocr_args is None:
easyocr_args = {}
result = reader.readtext(image_path, **easyocr_args)
coord = [item[0] for item in result]
text = [item[1] for item in result]
if display_img:
opencv_img = cv2.imread(image_path)
opencv_img = cv2.cvtColor(opencv_img, cv2.COLOR_RGB2BGR)
bb = []
for item in coord:
x, y, a, b = get_xywh(item)
bb.append((x, y, a, b))
cv2.rectangle(opencv_img, (x, y), (x + a, y + b), (0, 255, 0), 2)
plt.imshow(opencv_img)
else:
if output_bb_format == 'xywh':
bb = [get_xywh(item) for item in coord]
elif output_bb_format == 'xyxy':
bb = [get_xyxy(item) for item in coord]
return (text, bb), goal_filtering #
|