File size: 5,151 Bytes
eaf2e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import time
import torch
from math import ceil
from src.drl.rep_mem import ReplayMem
from src.utils.filesys import getpath
from src.env.environments import AsyncOlGenEnv, SingleProcessOLGenEnv


class AsyncOffpolicyTrainer:
    def __init__(self, rep_mem:ReplayMem=None, update_per=1, batch=256):
        self.rep_mem = ReplayMem() if rep_mem is None else rep_mem
        self.update_per = update_per
        self.batch = batch
        self.loggers = []

        self.start_time = 0.
        self.steps = 0
        self.num_trans = 0
        self.num_updates = 0
        pass

    def train(self, env:AsyncOlGenEnv, agent, budget, path, check_points=None):
        if check_points is None: check_points = []
        check_points.sort(reverse=True)
        self._reset()
        o = env.reset()
        for logger in self.loggers:
            if logger.__class__.__name__ == 'GenResLogger':
                logger.on_episode(env, agent, 0)
        while self.steps < budget:
            agent.actor.eval()
            a = agent.make_decision(o)
            o, done = env.step(a)
            self.steps += 1
            if done:
                model_credits = ceil(1.25 * env.eplen / self.update_per)
                # agent.actor.train()
                self._update(model_credits, env, agent)
            if len(check_points) and self.steps >= check_points[-1]:
                torch.save(agent.actor.net, getpath(f'{path}/policy{self.steps}.pth'))
                check_points.pop()

        self._update(0, env, agent, close=True)
        torch.save(agent.actor.net, getpath(f'{path}/policy.pth'))

    def _update(self, model_credits, env, agent, close=False):
        transitions, rewss = env.close() if close else env.rollout()
        self.rep_mem.add_transitions(transitions)
        self.num_trans += len(transitions)
        if len(self.rep_mem) > self.batch:
            t = 1
            while self.num_trans >= (self.num_updates + 1) * self.update_per:
                agent.update(*self.rep_mem.sample(self.batch))
                self.num_updates += 1
                if not close and t == model_credits:
                    break
                t += 1
        for logger in self.loggers:
            loginfo = self._pack_loginfo(rewss)
            if logger.__class__.__name__ == 'GenResLogger':
                logger.on_episode(env, agent, self.steps)
            else:
                logger.on_episode(**loginfo, close=close)

    def _pack_loginfo(self, rewss):
        return {
            'steps': self.steps, 'time': time.time() - self.start_time, 'rewss': rewss,
            'trans': self.num_trans, 'updates': self.num_updates
        }

    def _reset(self):
        self.start_time = time.time()
        self.steps = 0
        self.num_trans = 0
        self.num_updates = 0

    def set_loggers(self, *loggers):
        self.loggers = loggers


class SinProcOffpolicyTrainer:
    def __init__(self, rep_mem:ReplayMem=None, update_per=2, batch=256):
        self.rep_mem = ReplayMem() if rep_mem is None else rep_mem
        self.update_per = update_per
        self.batch = batch
        self.loggers = []

        self.start_time = 0.
        self.steps = 0
        self.num_trans = 0
        self.num_updates = 0

    def train(self, env:SingleProcessOLGenEnv, agent, budget, path):
        self.__reset()
        o = env.reset()
        for logger in self.loggers:
            if logger.__class__.__name__ == 'GenResLogger':
                logger.on_episode(env, agent, 0)
        while self.steps < budget:
            agent.actor.eval()
            a = agent.make_decision(o)
            o, _, done, info = env.step(a)
            self.steps += 1
            if done:
                self.__update(env, agent, info)

        self.__update(env, agent, {'transitions': [], 'rewss': []}, True)
        torch.save(agent.actor.net, getpath(f'{path}/policy.pth'))

    def __update(self, env, agent, info, close=False):
        transitions, rewss = info['transitions'], info['rewss']
        # print(rewss)
        self.rep_mem.add_transitions(transitions)
        self.num_trans += len(transitions)
        if len(self.rep_mem) > self.batch:
            t = 1
            while self.num_trans >= (self.num_updates + 1) * self.update_per:
                agent.update(*self.rep_mem.sample(self.batch))
                self.num_updates += 1
                t += 1
        for logger in self.loggers:
            loginfo = self.__pack_loginfo(rewss)
            if logger.__class__.__name__ == 'GenResLogger':
                logger.on_episode(env, agent, self.steps)
            else:
                logger.on_episode(**loginfo, close=close)

    def __pack_loginfo(self, rewss):
        if len(rewss):
            rewss = [rewss]
        return {
            'steps': self.steps, 'time': time.time() - self.start_time, 'rewss': rewss,
            'trans': self.num_trans, 'updates': self.num_updates
        }

    def __reset(self):
        self.start_time = time.time()
        self.steps = 0
        self.num_trans = 0
        self.num_updates = 0

    def set_loggers(self, *loggers):
        self.loggers = loggers