File size: 8,945 Bytes
eaf2e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import csv
import time
import random
from src.smb.level import *
from src.drl.me_reg import *
from src.drl.nets import esmb_sample
from src.utils.filesys import getpath
from src.utils.datastruct import RingQueue
from src.smb.asyncsimlt import AsycSimltPool
from src.env.environments import get_padded_obs
from src.olgen.ol_generator import VecOnlineGenerator, OnlineGenerator
from src.drl.drl_uses import load_cfgs, load_performance
from src.olgen.olg_policy import process_obs, RandGenPolicy, RLGenPolicy, EnsembleGenPolicy


def evaluate_rewards(lvls, rfunc='default', dest_path='', parallel=1, eval_pool=None):
    internal_pool = eval_pool is None
    if internal_pool:
        eval_pool = AsycSimltPool(parallel, rfunc_name=rfunc, verbose=False, test=True)
    res = []
    for lvl in lvls:
        eval_pool.put('evaluate', (0, str(lvl)))
        buffer = eval_pool.get()
        for _, item in buffer:
            res.append([sum(r) for r in zip(*item.values())])
    if internal_pool:
        buffer = eval_pool.close()
    else:
        buffer = eval_pool.get(True)
    for _, item in buffer:
        res.append([sum(r) for r in zip(*item.values())])
    if len(dest_path):
        np.save(dest_path, res)
    return res

def evaluate_mnd(lvls, refs, parallel=2):
    eval_pool = AsycSimltPool(parallel, verbose=False, refs=[str(ref) for ref in refs])
    res = []
    for lvl in lvls:
        eval_pool.put('mnd_item', str(lvl))
        res += eval_pool.get()
    res += eval_pool.get(wait=True)
    res = np.array(res)
    eval_pool.close()
    return np.mean(res[:, 0]), np.mean(res[:, 1])

def evaluate_mpd(lvls, parallel=2):
    task_datas = [[] for _ in range(parallel)]
    for i, (A, B) in enumerate(combinations(lvls, 2)):
        task_datas[i % parallel].append((str(A), str(B)))

    hms, dtws = [], []
    eval_pool = AsycSimltPool(parallel, verbose=False)
    for task_data in task_datas:
        eval_pool.put('mpd', task_data)
    res = eval_pool.get(wait=True)
    for task_hms, _ in res:
        hms += task_hms
        # dtws += task_dtws
    return np.mean(hms) #, np.mean(dtws)

def evaluate_gen_log(path, parallel=5):
    rfunc_name = load_cfgs(path, 'rfunc')
    f = open(getpath(f'{path}/step_tests.csv'), 'w', newline='')
    wrtr = csv.writer(f)
    cols = ['step', 'r-avg', 'r-std', 'mnd-hm', 'mnd-dtw', 'mpd-hm', 'mpd-dtw', '']
    wrtr.writerow(cols)
    start_time = time.time()
    for lvls, name in traverse_batched_level_files(f'{path}/gen_log'):
        step = name[4:]
        rewards = [sum(item) for item in evaluate_rewards(lvls, rfunc_name, parallel=parallel)]
        r_avg, r_std = np.mean(rewards), np.std(rewards)
        mpd = evaluate_mpd(lvls, parallel=parallel)
        line = [step, r_avg, r_std, mpd, '']
        wrtr.writerow(line)
        f.flush()
        print(
            f'{path}: step{step} evaluated in {time.time()-start_time:.1f}s -- '
            + '; '.join(f'{k}: {v}' for k, v in zip(cols, line))
        )
    f.close()
    pass

def evaluate_generator(generator, nr=200, h=50, parallel=5, dest_path=None, additional_info=None, rfunc_name='default'):
    if additional_info is None: additional_info = {}
    ''' Test Reward '''
    lvls = generator.generate(nr, h)
    rewards = [sum(item) for item in evaluate_rewards(lvls, parallel=parallel, rfunc=rfunc_name)]
    r_avg, r_std = np.mean(rewards), np.std(rewards)
    ''' Test MPD '''
    # mpd, _ = evaluate_mpd(lvls, parallel=parallel)
    mpd, *_ = evaluate_mpd(generator.generate(3000*2, h), parallel=parallel)
    res = {
        'r-avg': r_avg, 'r-std': r_std, 'div': mpd,
    }
    res.update(additional_info)
    if dest_path:
        with open(getpath(dest_path), 'w', newline='') as f:
            keys = [k for k in res.keys()]
            wrtr = csv.writer(f)
            wrtr.writerow(keys + [''])
            wrtr.writerow([res[k] for k in keys] + [''])
    return res
    pass

def evaluate_jmer(training_path, n=1000, max_parallel=None, device='cuda:0'):
    init_vecs = np.load(getpath('smb/init_latvecs.npy'))
    try:
        m, histlen, h, gamma, me_type = load_cfgs(training_path, 'm', 'N', 'h', 'gamma', 'me_type')
    except KeyError:
        return 0.
    mereg_func = LogWassersteinExclusion(1.) if me_type == 'logw' else WassersteinExclusion(1.)
    model = torch.load(getpath(training_path, 'policy.pth'), map_location=device)
    model.requires_grad_(False)
    if max_parallel is None:
        max_parallel = min(n, 512)
    me_regs = []
    obs_queues = [RingQueue(histlen) for _ in range(max_parallel)]
    while len(me_regs) < n:
        size = min(max_parallel, n - len(me_regs))
        mereg_vals, discount = np.zeros([size]), 1.
        veclists = [[] for _ in range(size)]
        for queue, veclist in zip(obs_queues, veclists):
            queue.clear()
            init_latvec = init_vecs[random.randrange(0, len(init_vecs))]
            queue.push(init_latvec)
            veclist.append(init_latvec)
        for _ in range(h):
            obs = np.stack([get_padded_obs(queue.to_list(), histlen) for queue in obs_queues[:size]])
            muss, stdss, betas = model.get_intermediate(process_obs(obs, device))
            mereg_vals += discount * mereg_func.forward(muss, stdss, betas).squeeze().cpu().numpy()
            discount *= gamma
            actions, _ = esmb_sample(muss, stdss, betas)
            for queue, veclist, action in zip(obs_queues, veclists, actions.cpu().numpy()):
                queue.push(action)
                veclist.append(action)
        me_regs += mereg_vals.tolist()
    return me_regs

def evaluate_baseline(*rfuncs, parallel=4):
    nr, md, nd, h = 100, 1000, 200, 50
    gen_policy = RandGenPolicy()
    olgenerator = OnlineGenerator(gen_policy)
    lvls, refs = olgenerator.generate(md, h), olgenerator.generate(nd, h)
    divs_h, divs_js = evaluate_mnd(lvls, refs, parallel=parallel)
    keys, vals = ['d-h', 'd-js'], [divs_h, divs_js]
    print(f'Diversity of baseline generator: Hamming {divs_h:.2f}; TPJS {divs_js:.2f}')
    for rfunc in rfuncs:
        try:
            print(f'Start to evaluate {rfunc}')
            start_time = time.time()
            lvls = olgenerator.generate(nr, h)
            rewards = [sum(item) for item in evaluate_rewards(lvls, parallel=parallel, rfunc=rfunc)]
            keys.append(rfunc)
            vals.append(np.mean(rewards))
            print(f'Evaluation for {rfunc} finished in {time.time()-start_time:.2f}s')
            print(f'Evaluation results for {rfunc}: {vals[-1]:.2f}')
        except AttributeError:
            continue
    with open(getpath('training_data', 'baselines.csv'), 'w', newline='') as f:
        wrtr = csv.writer(f)
        wrtr.writerow(keys)
        wrtr.writerow(vals)

def sample_initial():
    playable_latvecs = np.load(getpath('smb/init_latvecs.npy'))
    indexes = random.sample([*range(len(playable_latvecs))], 500)
    z = playable_latvecs[indexes, :]

    np.save(getpath('analysis/initial_seg.npy'), z)
    pass

def generate_levels_for_test(h=25):
    init_set = np.load(getpath('analysis/initial_seg.npy'))
    def _generte_one(policy, path):
        try:
            start = time.time()
            generator = VecOnlineGenerator(policy, vec_num=len(init_set))
            fd, _ = os.path.split(getpath(path))
            os.makedirs(fd, exist_ok=True)
            generator.re_init(init_set)
            lvls = generator.generate(len(init_set), h, rand_init=False)
            save_batch(lvls, path)
            print('Save to', path, '%.2fs' % (time.time() - start))
        except FileNotFoundError as e:
            print(e)
    for l, m in product(['0.0', '0.1', '0.2', '0.3', '0.4', '0.5'], [2, 3, 4, 5]):
        for i in range(1, 6):
            pi_path = f'training_data/varpm-fhp/l{l}_m{m}/t{i}'
            _generte_one(RLGenPolicy.from_path(pi_path), f'test_data/varpm-fhp/l{l}_m{m}/t{i}/samples.lvls')
            pi_path = f'training_data/varpm-lgp/l{l}_m{m}/t{i}'
            _generte_one(RLGenPolicy.from_path(pi_path), f'test_data/varpm-lgp/l{l}_m{m}/t{i}/samples.lvls')
    for algo in ['sac', 'egsac', 'asyncsac', 'pmoe']:
        for i in range(1, 6):
            pi_path = f'training_data/{algo}/fhp/t{i}'
            _generte_one(RLGenPolicy.from_path(pi_path), f'test_data/{algo}/fhp/t{i}/samples.lvls')
            pi_path = f'training_data/{algo}/lgp/t{i}'
            _generte_one(RLGenPolicy.from_path(pi_path), f'test_data/{algo}/lgp/t{i}/samples.lvls')
    for algo in ['sunrise', 'dvd']:
        for i in range(1, 5):
            pi_path = f'training_data/{algo}/fhp/t{i}'
            _generte_one(EnsembleGenPolicy.from_path(pi_path), f'test_data/{algo}/fhp/t{i}/samples.lvls')
            pi_path = f'training_data/{algo}/lgp/t{i}'
            _generte_one(EnsembleGenPolicy.from_path(pi_path), f'test_data/{algo}/lgp/t{i}/samples.lvls')
        pass


if __name__ == '__main__':
    generate_levels_for_test()