File size: 12,404 Bytes
eaf2e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import numpy as np
from gym.spaces import Dict, Discrete

from rlkit.data_management.replay_buffer import ReplayBuffer


class ObsDictRelabelingBuffer(ReplayBuffer):
    """
    Replay buffer for environments whose observations are dictionaries, such as
        - OpenAI Gym GoalEnv environments. https://blog.openai.com/ingredients-for-robotics-research/
        - multiworld MultitaskEnv. https://github.com/vitchyr/multiworld/

    Implementation details:
     - Only add_path is implemented.
     - Image observations are presumed to start with the 'image_' prefix
     - Every sample from [0, self._size] will be valid.
     - Observation and next observation are saved separately. It's a memory
       inefficient to save the observations twice, but it makes the code
       *much* easier since you no longer have to worry about termination
       conditions.
    """

    def __init__(
            self,
            max_size,
            env,
            fraction_goals_rollout_goals=1.0,
            fraction_goals_env_goals=0.0,
            internal_keys=None,
            goal_keys=None,
            observation_key='observation',
            desired_goal_key='desired_goal',
            achieved_goal_key='achieved_goal',
    ):
        if internal_keys is None:
            internal_keys = []
        self.internal_keys = internal_keys
        if goal_keys is None:
            goal_keys = []
        if desired_goal_key not in goal_keys:
            goal_keys.append(desired_goal_key)
        self.goal_keys = goal_keys
        assert isinstance(env.observation_space, Dict)
        assert 0 <= fraction_goals_rollout_goals
        assert 0 <= fraction_goals_env_goals
        assert 0 <= fraction_goals_rollout_goals + fraction_goals_env_goals
        assert fraction_goals_rollout_goals + fraction_goals_env_goals <= 1
        self.max_size = max_size
        self.env = env
        self.fraction_goals_rollout_goals = fraction_goals_rollout_goals
        self.fraction_goals_env_goals = fraction_goals_env_goals
        self.ob_keys_to_save = [
            observation_key,
            desired_goal_key,
            achieved_goal_key,
        ]
        self.observation_key = observation_key
        self.desired_goal_key = desired_goal_key
        self.achieved_goal_key = achieved_goal_key
        if isinstance(self.env.action_space, Discrete):
            self._action_dim = env.action_space.n
        else:
            self._action_dim = env.action_space.low.size

        self._actions = np.zeros((max_size, self._action_dim))
        # self._terminals[i] = a terminal was received at time i
        self._terminals = np.zeros((max_size, 1), dtype='uint8')
        # self._obs[key][i] is the value of observation[key] at time i
        self._obs = {}
        self._next_obs = {}
        self.ob_spaces = self.env.observation_space.spaces
        for key in self.ob_keys_to_save + internal_keys:
            assert key in self.ob_spaces, \
                "Key not found in the observation space: %s" % key
            type = np.float64
            if key.startswith('image'):
                type = np.uint8
            self._obs[key] = np.zeros(
                (max_size, self.ob_spaces[key].low.size), dtype=type)
            self._next_obs[key] = np.zeros(
                (max_size, self.ob_spaces[key].low.size), dtype=type)

        self._top = 0
        self._size = 0

        # Let j be any index in self._idx_to_future_obs_idx[i]
        # Then self._next_obs[j] is a valid next observation for observation i
        self._idx_to_future_obs_idx = [None] * max_size

    def add_sample(self, observation, action, reward, terminal,
                   next_observation, **kwargs):
        raise NotImplementedError("Only use add_path")

    def terminate_episode(self):
        pass

    def num_steps_can_sample(self):
        return self._size

    def add_path(self, path):
        obs = path["observations"]
        actions = path["actions"]
        rewards = path["rewards"]
        next_obs = path["next_observations"]
        terminals = path["terminals"]
        path_len = len(rewards)

        actions = flatten_n(actions)
        if isinstance(self.env.action_space, Discrete):
            actions = np.eye(self._action_dim)[actions].reshape((-1, self._action_dim))
        obs = flatten_dict(obs, self.ob_keys_to_save + self.internal_keys)
        next_obs = flatten_dict(next_obs, self.ob_keys_to_save + self.internal_keys)
        obs = preprocess_obs_dict(obs)
        next_obs = preprocess_obs_dict(next_obs)

        if self._top + path_len >= self.max_size:
            """
            All of this logic is to handle wrapping the pointer when the
            replay buffer gets full.
            """
            num_pre_wrap_steps = self.max_size - self._top
            # numpy slice
            pre_wrap_buffer_slice = np.s_[
                                    self._top:self._top + num_pre_wrap_steps, :
                                    ]
            pre_wrap_path_slice = np.s_[0:num_pre_wrap_steps, :]

            num_post_wrap_steps = path_len - num_pre_wrap_steps
            post_wrap_buffer_slice = slice(0, num_post_wrap_steps)
            post_wrap_path_slice = slice(num_pre_wrap_steps, path_len)
            for buffer_slice, path_slice in [
                (pre_wrap_buffer_slice, pre_wrap_path_slice),
                (post_wrap_buffer_slice, post_wrap_path_slice),
            ]:
                self._actions[buffer_slice] = actions[path_slice]
                self._terminals[buffer_slice] = terminals[path_slice]
                for key in self.ob_keys_to_save + self.internal_keys:
                    self._obs[key][buffer_slice] = obs[key][path_slice]
                    self._next_obs[key][buffer_slice] = next_obs[key][path_slice]
            # Pointers from before the wrap
            for i in range(self._top, self.max_size):
                self._idx_to_future_obs_idx[i] = np.hstack((
                    # Pre-wrap indices
                    np.arange(i, self.max_size),
                    # Post-wrap indices
                    np.arange(0, num_post_wrap_steps)
                ))
            # Pointers after the wrap
            for i in range(0, num_post_wrap_steps):
                self._idx_to_future_obs_idx[i] = np.arange(
                    i,
                    num_post_wrap_steps,
                )
        else:
            slc = np.s_[self._top:self._top + path_len, :]
            self._actions[slc] = actions
            self._terminals[slc] = terminals
            for key in self.ob_keys_to_save + self.internal_keys:
                self._obs[key][slc] = obs[key]
                self._next_obs[key][slc] = next_obs[key]
            for i in range(self._top, self._top + path_len):
                self._idx_to_future_obs_idx[i] = np.arange(
                    i, self._top + path_len
                )
        self._top = (self._top + path_len) % self.max_size
        self._size = min(self._size + path_len, self.max_size)

    def _sample_indices(self, batch_size):
        return np.random.randint(0, self._size, batch_size)

    def random_batch(self, batch_size):
        indices = self._sample_indices(batch_size)
        resampled_goals = self._next_obs[self.desired_goal_key][indices]

        num_env_goals = int(batch_size * self.fraction_goals_env_goals)
        num_rollout_goals = int(batch_size * self.fraction_goals_rollout_goals)
        num_future_goals = batch_size - (num_env_goals + num_rollout_goals)
        new_obs_dict = self._batch_obs_dict(indices)
        new_next_obs_dict = self._batch_next_obs_dict(indices)

        if num_env_goals > 0:
            env_goals = self.env.sample_goals(num_env_goals)
            env_goals = preprocess_obs_dict(env_goals)
            last_env_goal_idx = num_rollout_goals + num_env_goals
            resampled_goals[num_rollout_goals:last_env_goal_idx] = (
                env_goals[self.desired_goal_key]
            )
            for goal_key in self.goal_keys:
                new_obs_dict[goal_key][num_rollout_goals:last_env_goal_idx] = \
                    env_goals[goal_key]
                new_next_obs_dict[goal_key][
                num_rollout_goals:last_env_goal_idx] = \
                    env_goals[goal_key]
        if num_future_goals > 0:
            future_obs_idxs = []
            for i in indices[-num_future_goals:]:
                possible_future_obs_idxs = self._idx_to_future_obs_idx[i]
                # This is generally faster than random.choice. Makes you wonder what
                # random.choice is doing
                num_options = len(possible_future_obs_idxs)
                next_obs_i = int(np.random.randint(0, num_options))
                future_obs_idxs.append(possible_future_obs_idxs[next_obs_i])
            future_obs_idxs = np.array(future_obs_idxs)
            resampled_goals[-num_future_goals:] = self._next_obs[
                self.achieved_goal_key
            ][future_obs_idxs]
            for goal_key in self.goal_keys:
                new_obs_dict[goal_key][-num_future_goals:] = \
                    self._next_obs[goal_key][future_obs_idxs]
                new_next_obs_dict[goal_key][-num_future_goals:] = \
                    self._next_obs[goal_key][future_obs_idxs]

        new_obs_dict[self.desired_goal_key] = resampled_goals
        new_next_obs_dict[self.desired_goal_key] = resampled_goals
        new_obs_dict = postprocess_obs_dict(new_obs_dict)
        new_next_obs_dict = postprocess_obs_dict(new_next_obs_dict)
        # resampled_goals must be postprocessed as well
        resampled_goals = new_next_obs_dict[self.desired_goal_key]

        new_actions = self._actions[indices]
        """
        For example, the environments in this repo have batch-wise
        implementations of computing rewards:

        https://github.com/vitchyr/multiworld
        """

        if hasattr(self.env, 'compute_rewards'):
            new_rewards = self.env.compute_rewards(
                new_actions,
                new_next_obs_dict,
            )
        else:  # Assuming it's a (possibly wrapped) gym GoalEnv
            new_rewards = np.ones((batch_size, 1))
            for i in range(batch_size):
                new_rewards[i] = self.env.compute_reward(
                    new_next_obs_dict[self.achieved_goal_key][i],
                    new_next_obs_dict[self.desired_goal_key][i],
                    None
                )
        new_rewards = new_rewards.reshape(-1, 1)

        new_obs = new_obs_dict[self.observation_key]
        new_next_obs = new_next_obs_dict[self.observation_key]
        batch = {
            'observations': new_obs,
            'actions': new_actions,
            'rewards': new_rewards,
            'terminals': self._terminals[indices],
            'next_observations': new_next_obs,
            'resampled_goals': resampled_goals,
            'indices': np.array(indices).reshape(-1, 1),
        }
        return batch

    def _batch_obs_dict(self, indices):
        return {
            key: self._obs[key][indices]
            for key in self.ob_keys_to_save
        }

    def _batch_next_obs_dict(self, indices):
        return {
            key: self._next_obs[key][indices]
            for key in self.ob_keys_to_save
        }


def flatten_n(xs):
    xs = np.asarray(xs)
    return xs.reshape((xs.shape[0], -1))


def flatten_dict(dicts, keys):
    """
    Turns list of dicts into dict of np arrays
    """
    return {
        key: flatten_n([d[key] for d in dicts])
        for key in keys
    }


def preprocess_obs_dict(obs_dict):
    """
    Apply internal replay buffer representation changes: save images as bytes
    """
    for obs_key, obs in obs_dict.items():
        if 'image' in obs_key and obs is not None:
            obs_dict[obs_key] = unnormalize_image(obs)
    return obs_dict


def postprocess_obs_dict(obs_dict):
    """
    Undo internal replay buffer representation changes: save images as bytes
    """
    for obs_key, obs in obs_dict.items():
        if 'image' in obs_key and obs is not None:
            obs_dict[obs_key] = normalize_image(obs)
    return obs_dict


def normalize_image(image):
    assert image.dtype == np.uint8
    return np.float64(image) / 255.0


def unnormalize_image(image):
    assert image.dtype != np.uint8
    return np.uint8(image * 255.0)